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Abstract

The acquisition of ultra-wideband (UWB) signals is a potential bottleneck for system throughput in

a packet-based network employing UWB signaling format in the physical layer. The problem is mainly

due to the low received signal power which forces the acquisition system to process the signal over long

periods of time before getting a reliable estimate of the timing of the signal. Hence there is a need to

develop more efficient acquisition schemes by taking into account the signal and channel characteristics.

In this paper, we investigate a single-user acquisition scheme which collects the energy in the multipaths

by performing equal gain combining (EGC) to improve the acquisition performance. We define the hit

set as the set of hypothesized phases which can guarantee adequate system performance after acquisition

and also study the effect of the EGC window length on the acquisition performance.

Index Terms

Ultra-wideband, acquisition, equal-gain combining, multipath channels, serial search

This research was supported in part by the Air Force Research Laboratory under Grant F008630-02-1-0008.



1

I. INTRODUCTION

Ultra-wideband (UWB) signaling [1], [2], [3] is under evaluation as a possible modulation

scheme for wireless personal area network (PAN) protocols. The features of UWB radio which

make it an attractive choice are its multiple access capabilities [1], [4], lack of significant

multipath fading [5], [6], ability to support high data rates [7] and low transmitter power resulting

in longer battery life for portable devices. The acquisition of the UWB signal is a potential

bottleneck for system throughput in a packet-based network employing UWB signaling in the

physical layer. The problem is mainly due to the low received signal power which forces the

acquisition system to process the signal over long periods of time before getting a reliable

estimate of the timing (phase) of the signal. Hence there is a need to develop more efficient

acquisition schemes by taking into account the signal and channel characteristics. The UWB

channel is a dense multipath channel without significant fading [6], [8]. In a dense multipath

environment, there will be a considerable amount of energy available in the multipath components

(MPCs). It seems reasonable to expect that an acquisition scheme which utilizes the energy in

the MPCs would perform better than one which does not. Acquisition schemes which take into

account the multipath nature of the channel have been developed for the case of DS-CDMA

signals in [9], [10], [11], [12], while previous work on UWB acquisition [13], [14] has focussed

on developing better search strategies.

In this paper, we propose a single-user acquisition scheme which performs equal gain

combining (EGC) to collect the energy available in the MPCs resulting in faster acquisition.

There are two main issues which arise if we adopt such a formulation. Firstly, in a multipath

environment without significant fading the ambiguity function does not have an impulse-like

shape as it does in the absence of multipaths. In fact, the ambiguity function decays slowly from

its maximum value since a significant amount of energy is collected even if the hypothesized

phase is not equal to the true phase but is sufficiently close to it. The fundamental difference

between the acquisition problems in a multipath channel and in a channel without multipath

is that there are more than one hypothesized phases which can be considered a hit or a good
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estimate of the true signal phase. Thus there is a need to redefine the set of hypothesized phases

which correspond to a hit by taking into account the channel model and the length of the EGC

window. Secondly, the choice of the length of the EGC window is not apparent. A small window

will not collect enough energy and thus will result in a low probability of detecting the correct

signal phase. A large window may collect a considerable amount of energy even when the true

phase does not match the hypothesized phase, resulting in a high probability of false alarm.

In this paper, we propose a definition of the set of hypothesized phases which correspond to

a good estimate of the true signal phase by considering the system performance subsequent to

acquisition. We also investigate the effect of the EGC window length on the mean acquisition

time.

The paper is organized as follows. In Section II, we describe the system model under

consideration. In Section III, we motivate and formulate EGC for acquisition in a multipath

channel. In Section IV, we define the set of hypothesized phases which correspond to a hit by

considering system performance subsequent to acquisition. We derive expressions for average

probabilities of detection and false alarm in Section V. In Section VI we give a design criterion

for choosing the decision threshold and study the effect of the EGC window length on the

mean acquisition time for a serial search strategy. Section VII has the results followed by the

conclusions in Section VIII.

II. SYSTEM MODEL

A. Channel Model

We assume that the propogation channel is modeled by the UWB indoor channel model

described in [15]. This model gives a statistical distribution for the path gains based on a

UWB propagation experiment but does not address the issue of characterization of the received

waveform shape. Due to the frequency sensitivity of the UWB channel, the pulse shapes received

at different excess delays are path-dependent [16]. To enable tractable analysis, we assume that

the pulse shapes associated with all the propagation paths are identical. The channel is then a
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stochastic tapped delay line model expressed as

h(t) =

Ntap−1
∑

k=0

hkf(t− kTc), (1)

where Ntap is the number of taps in the channel response, Tc = 2 ns is the tap spacing, hk is the

path gain at excess delay kTc and f(t) models the combined effect of the transmitting antenna

and the propagation channel on the transmitted pulse. The path gains are independent but not

identically distributed with a Nakagami-m distribution. The average energy gains Ωk = E[h2
k] of

the path gains normalized to the total energy received at one meter distance are given by

Ωk =







Etot

1+rF (ε)
, for k = 0

Etot

1+rF (ε)
re−((k−1)Tc/ε), for k = 1, 2, . . . , Ntap − 1,

(2)

where Etot is the total average energy in all the paths normalized to the total energy received

at one meter distance, r is the ratio of the average energy of the second MPC and the

average energy of the direct path, ε is the decay constant of the power delay profile and

F (ε) = 1−exp[−(Ntap−1)kTc/ε]
1−exp(−kTc/ε)

. According to [15], Etot, r and ε are all modeled by lognormal

distributions. The Nakagami fading figures {mk} are distributed according to truncated Gaussian

distributions whose mean and variance vary linearly with excess delay. In this paper, these long-

term statistics are treated as constants over the duration of the acquisition process.

B. Transmitted Signal

The transmitted signal is given by

x(t) =
√
P

∞∑

l=−∞

ψ(t− lTf − clTc), (3)

where ψ(t) is the UWB monocycle waveform, P is the transmitted power, Tf is the pulse

repetition time, {cl} is the pseudorandom time-hopping (TH) sequence with period Nth taking

integer values between 0 and Nh−1, and Tc is the step size of the additional time shift provided

by the TH sequence which is related to the pulse repetition rate as Tf = NhTc.
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C. Received Signal

The received signal is given by

r(t) =
√

Pr

∞∑

l=−∞

w(t− lTf − clTc − τ) + n(t), (4)

where

w(t) =

Ntap−1
∑

k=0

hkψr(t− kTc). (5)

Here Pr is the power received at a distance of one meter from the transmitter, ψr(t) is the

received UWB pulse of duration Tw < Tc normalized to have unit energy, τ is the propagation

delay, and n(t) is an additive white gaussian noise (AWGN) process with zero mean and power

spectral density σ2.

III. MOTIVATION AND PROBLEM FORMULATION

The timing information of the transmitted signal is essential for the performance of a receiver

in a wireless communication system. In a multipath channel, the energy corresponding to the true

signal phase is spread over several MPCs. Considering that we have no information regarding

the channel state, EGC is a practical way of utilizing this energy to develop a more efficient

acquisition scheme. The main difference between the acquisition problems in a multipath channel

and a channel without multipath is that there are more than one hypothesized phases which can

be considered a good estimate of the true signal phase. In a multipath environment, the receiver

may lock onto a non-line-of-sight (non-LOS) path and still be able to perform adequately as long

as it is able to collect enough energy. Fig. 1 shows two situations where a receiver performing

EGC in a multipath environment is able to collect a considerable fraction of the energy of the

received signal even though the estimated phase is not exactly equal to the true phase. For the

purpose of illustration, we assume that the channel response has length Ntap = 5 and that the

receiver is using an EGC window of length G = 5. The received signal is shown over a duration

of one pulse repetition time Tf = 7Tc, where the TH sequence is providing an additional time

shift of Tc. The shaded region correponds to the span of the EGC window. In the first situation,
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the hypothesized phase exceeds the true phase by Tc and in the second situation the hypothesized

phase precedes the true phase by Tc. In both cases, the correlation of the received signal with the

template signal will result in the collection of signal energy comparable to the energy collected

in the case when the hypothesized phase equals the true phase. The difference between the

two situations is that a receiver not performing EGC will not work for the situation shown in

Fig. 1(b). It will work for the situation shown in Fig. 1(a) provided that the non-LOS MPC it

locks onto is strong enough.

A typical acquisition system correlates the received waveform with a locally generated replica

and compares the correlator output to a threshold to determine whether the hypothesized phase of

the replica is correct. If the threshold is exceeded, the hypothesized phase becomes the estimate

of the true phase. We define the hit set to be the set of estimated phases which result in successful

demodulation. We assume that a particular bit will be correctly demodulated if the energy of the

bit collected by the observation window is significantly greater than the energy of the adjacent

bits collected by the observation window. Employing such an energy-based definition of a hit

has the advantage of being independent of the particular modulation format used.

We assume that the normalized received monocycle waveform ψr(t) and the TH sequence

{cl} are known to the receiver. We propose to use an equal gain combiner of window size G.

The receiver template signal wr(t) is given by

wr(t) =

G−1∑

k=0

ψr(t− kTc). (6)

The reference TH signal can be obtained by combining the receiver template signal wr(t) and

the known time hopping sequence as

s(t) =

MNth−1∑

l=0

wr(t− lTf − clTc − τ̂), (7)

where M specifies the number of TH waveform periods in the dwell time and τ̂ is the

hypothesized phase. To simplify the analysis, we assume that the true phase τ is an integer

multiple of Tc. By the periodicity of the transmitted signal, we have 0 ≤ τ ≤ (NthNh − 1)Tc.

The hypothesized phase τ̂ is also an integer multiple of Tc with the same range as τ . Then
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∆τ = τ̂ − τ = αTf + βTc where α and β are integers such that −Nth + 1 ≤ α ≤ Nth − 1 and

0 ≤ β ≤ Nh − 1. The correlator output is given by

y =

∫ τ̂+MNthTf

τ̂

r(t)s(t)dt

= M
√

Pr

Ntap−1
∑

k=0

rk(∆τ)hk

︸ ︷︷ ︸

R(∆τ ;h)

+ny, (8)

where rk(∆τ) is the number of times the kth MPC is collected by one period of the reference

TH signal, h is an Ntap×1 vector containing the channel taps and ny is the noise component of

the correlator output. We note that ny is a zero-mean Gaussian random variable with variance

σ2
y . If S = dNh+G−2

Nh
e is the number of Tf time slots the EGC window can possibly reach and

Sm = dNtap−1
Nh

e is the number of Tf time slots the MPCs can spread across where dxe is the

smallest integer not less than x, we have

rk(∆τ) =

Nth−1∑

l=0

S∑

i=−Sm

G−1∑

j=0

χ(cl + j + β, cl+i+α + k + iNh), (9)

where χ(a, b) = 1 if a = b, and 0 otherwise. The values of rk(∆τ) and σ2
y depend on the

particular pseudorandom TH sequence chosen. To simplify the analysis we assume that the TH

sequence is random and that Nth is large. Under these assumptions the expected values of rk(∆τ)

and σ2
y are a reasonable approximation to the actual values. The expected values of rk(∆τ) and

σ2
y over the set of random TH sequences are calculated in the Appendix.

IV. HIT SET DEFINITION

As suggested in the previouss discussion, a hypothesized phase belongs to the hit set if it

results in succesful demodulation subsequent to acquisition. It seems reasonable to assume that

a receiver equipped with the necessary hardware to perform EGC for acquisition will perform

EGC for demodualtion as well. Thus we assume that a single EGC window size is used for

both acquisition and demodulation. Let Nb consecutive UWB monocycles be modulated by one

bit. To make a decision on a particular bit we correlate the received signal with a reference TH
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signal given by

sb(t) =

Nb−1∑

l=0

wr(t− lTf − clTc − τ̂ ). (10)

The amount of a bit’s energy collected by the correlator depends on the estimated phase τ̂ .

For successful demodulation of a bit, it is not sufficient if the energy of the bit collected by the

correlator is significant. There is an additional restriction that this energy should be much greater

than the energy of the adjacent bits collected by the correlator. Fig. 2 shows a simplified situation

where a bit is incorrectly demodulated even though the correlator collects a significant amount

of its energy. Suppose that the modulation scheme is bipolar amplitude modulation where a ’1’

is transmitted as a positive pulse and a ’0’ is transmitted as a negative pulse. For the purpose

of illustration, we assume that a bit modulates a single monocycle, i.e. Nb = 1, the channel

response has length Ntap = 2, the receiver is using an EGC window of length G = 2 and

Nh = 3. The received signal corresponding to the bit sequence 10 is shown over a duration 2Tf

where the TH sequence is providing additional time shifts of Tc and 0 for the first and second

pulses respectively. the shaded region corresponds to the energy of the received signal collected

by the correlator to make a decision on the first bit when the hypothesized phase exceeds the

true phase by Tc. Even though the correlator collects the energy in the non-LOS MPC of the first

bit it will fail to demodulate that bit correctly because it collects the LOS MPC of the second

bit which is different from the first one. Thus we need to look at the difference of the collected

energies corresponding to the desired bit and its adjacent bits in order to quantify successful

demodulation.

For a given ∆τ , the difference of the correlator outputs corresponding to the desired bit and

the adjacent bits is given by

Rb(∆τ ;h) =
√

Pr

Ntap−1
∑

k=0

rb
k(∆τ)hk, (11)

where

rb
k(∆τ) =

Nb−1∑

l=0

S∑

i=−Sm

G−1∑

j=0

χ(cl + j+β, cl+i+α +k+ iNh)∆(l+ i+α, 0)∆(Nb−1, l+ i+α), (12)
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with ∆(a, b) = 1 if a ≥ b, and −1 otherwise. We note that Rb(∆τ ;h) > 0 indicates that the

energy collected from the desired bit is larger than that collected from the adjacent bits, and if

this is the case, R2
b(∆τ ;h) is the effective bit energy which will determine system performance.

Thus for a given true phase τ the hit set is defined as the following:

Sh = {τ̂ : Pr[Rb(∆τ ;h) > 0] > 1− λ1 and Pr[R2
b(∆τ ;h) < AR2

b(0;h)] < λ2}, (13)

where A < 1 is the fraction of the energy needed for successful demodulation of the bit given

that the bit is correctly demodulated in the case of perfect synchronization and 0 < λ1, λ2 < 1.

The first condition in the definition guarantees that for the phases in the hit set, the energy of the

desired bit collected by the correlator exceeds the energy of the adjacent bits collected by the

correlator with high probability. The second condition guarantees that the effective bit energy

for the phases in the hit set exceeds a fixed fraction of the effective bit energy in the case of

perfect synchronization with high probability. The hit set typically consists of phases around the

true phase as illustrated in Fig. 3(a) where the phases in the shaded region belong to the hit set.

Owing to the outage formulation, it is also possible that the hit set consists of non-contiguous

phases as shown in Fig. 3(b).

V. PROBABILITIES OF DETECTION AND FALSE ALARM

For a particular channel realization and fixed ∆τ , the correlator output y in (8) has a Gaussian

distribution with pdf

pY (y) =
1√

2πσy

e−(y−R(∆τ ;h))2/2σ2
y . (14)

The probabilities of false alarm and detection conditioned on the particular channel realization

and given the decision threshold γ are given as

PFA(γ,∆τ) = Pr[y > γ|τ̂ /∈ Sh] = Q

(
γ − R(∆τ ;h)

σy

)

, τ̂ /∈ Sh. (15)

PD(γ,∆τ) = Pr[y > γ|τ̂ ∈ Sh] = Q

(
γ − R(∆τ ;h)

σy

)

, τ̂ ∈ Sh. (16)
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The false alarm probability averaged over the channel realizations is given by

Eh[PFA(γ,∆τ)] = Eh

[

Q

(
γ − R(∆τ ;h)

σy

)]

. (17)

The Gil-Pelaez lemma [17] gives an alternative form of the Q function as

Q(x) =
1

2
− 1

π

∫ ∞

0

1

t
e−t2/2 sin(tx)dt. (18)

Substituting this form of the Q function we get

Eh[PFA(γ,∆τ)] = Eh

[
1

2
− 1

π

∫ ∞

0

1

t
e−t2/2 sin t(

γ − R(∆τ ;h)

σy
)dt

]

=
1

2
− 1

π

∫ ∞

0

1

t
e−t2/2Eh

[

sin t(
γ −R(∆τ ;h)

σy
)

]

dt

=
1

2
− 1

π

∫ ∞

0

1

t
e−t2/2Im

{

Eh

[

e
j(

γ−R(∆τ ;h)
σy

)t

]}

dt

=
1

2
− 1

π

∫ ∞

0

1

t
e−t2/2Im

{

e
jγt
σy Eh

[

e
−jR(∆τ ;h)t

σy

]}

dt

=
1

2
− 1

π

∫ ∞

0

Im

{
1

t
e−t2/2e

jγt
σy φR

(−t
σy

)}

dt

=
1

2
− 1

2π

∫ ∞

0

Im

{

1

t
e
−t+ jγ

√

2t
σy φR

(

−
√

2t

σy

)}

dt, (19)

where φR is the characteristic function of R(∆τ ;h). From (8), R(∆τ ;h) is a linear combination

of independent random variables and hence its characteristic function is given by

φR(ω) =

Ntap−1
∏

k=0

φk(M
√

Prrk(∆τ)ω), (20)

where φk(·)’s are the characteristic functions of the Nakagami-m distributed hk’s. Since finite

limits of integration are more suitable for numerical integration we substitute t = tan θ to get

Eh[PFA(γ,∆τ)] =
1

2
− 1

π

∫ π
2

0

Im







e
− tan θ+ jγ

√

2 tan θ
σy

sin 2θ
φR

(

−
√

2 tan θ

σy

)





dθ. (21)

We get a similar expression for the average probability of detection.
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VI. MEAN ACQUISITION TIME ANALYSIS OF SERIAL SEARCH

We choose the decision threshold γd to be the minimum threshold such that the maximum of

the average false alarm probability over τ̂ /∈ Sh is not greater than a given constant δ.

γd = argmin
γ

max
τ̂ /∈Sh

Eh[PFA(γ,∆τ)] ≤ δ. (22)

We define a hit or acquisition event as the event when the decision threshold is exceeded for

some τ̂ ∈ Sh. We define a miss as the event when the decision threshold is not exceeded for all

τ̂ ∈ Sh. If the correlator outputs for different phase evaluations are assumed to be independent,

then the average probability of a hit for a particular τ̂ is Eh[PD(∆τ)] and the average probability

of a miss is given by

PM =
∏

τ̂∈Sh

(1− Eh[PD(γ,∆τ)]). (23)

Although the average probability of a miss is a potential indicator of acquisition system

performance, a more appropriate metric is the mean acquisition time. The mean acquisition

time depends on the search strategy employed and to illustrate the effect of the choice of G, we

assume that a serial search strategy is used. Owing to our definition, the hit set Sh consists of

one or more clusters of hypothesized phases within the search space. The search space is the set

Sp = {nTc : n ∈ Z and 0 ≤ n ≤ Ns − 1} where Ns = NthNh. Let Sh consist of L disconnected

clusters of phases within the search space where the size of the lth cluster is Hl. Let H be the

size of Sh where H =
∑L

l=1Hl. Let the location of the lth cluster within the search space be

Al where 1 ≤ A1 ≤ A2 ≤ . . . ≤ AL ≤ Ns. We will find it convenient to define Bl to be the

position of the last phase of the lth cluster where Hl = Bl−Al +1. Thus the lth cluster consists

of the phases {(Al − 1)Tc, AlTc, . . . , (Bl − 1)Tc}. The initial value of the hypothesized phase

which corresponds to the starting point of the search is chosen at random from the set Sp.

We need to consider all possible sequences of events leading to a hit or acquisition event.

The mean acquisition time can then be calculated as the average of the times taken for each of

the acquisition events. An acquisition event is defined by a particular position n of the initial

value of the hypothesized phase in Sp, the position (l, i) of the hypothesized phase in Sh where



11

we have a hit where l is the index of the cluster and i is the position of the phase within that

cluster, a particular number of misses j of Sh, and a particular number of false alarms k in

hypothesized phases evaluated which do not belong to Sh. Let Tacq(n) be the mean acquisition

time conditioned on the event that the serial search starts at the nth position in Sp i.e. the initial

value of the hypothesized phase is (n− 1)Tc. Then the mean acquisition time is

T̄acq =
1

Ns

Ns∑

n=1

Tacq(n). (24)

Without loss of generality, we can assume that A1 = 1. First, suppose that the initial value

of the hypothesized phase lies to the right of the last cluster i.e. n ∈ {BL + 1, BL + 2, . . . , Ns}.

The total acquisition time for a particular acquisition event defined by (n, j, k, l, i) is then

T (n, j, k, l, i) = (Ns − n+ 1)T + jNsT + kTfa + (Al + i− 1)T

= (Ns − n+ jNs + Al + i)T + kTfa (25)

where T is the dwell time for the evaluation of one hypothesized phase and Tfa is the time

required to reject a hypothesized phase not in Sh when a false alarm occurs. The total number

of hypothesized phases evaluated for this event is Ns − n + jNs + Al + i, the total number of

evaluated phases which belong to Sh is jH +
∑l−1

m=1Hm + i, and the total number of evaluated

phases which do not belong to Sh is thus K = Ns−n+j(Ns−H)+Al−
∑l−1

m=1Hm. Let Pd(l, i)

denote the average probability of detection of the ith phase in the lth cluster of the hit set. The

average probability of the serial search missing the lth cluster is PM(l) =
∏Hl

i=1[1 − Pd(l, i)].

Let PM =
∏L

l=1 PM(l) be the average probability of the serial search missing Sh. Then the

probability of j misses of Sh followed by a hit at the phase in Sh which is at the ith position of

the lth cluster is P j
MPh(l, i)

∏l−1
c=1 PM(c) where Ph(l, i) = Pd(l, i)

∏i−1
r=1[1−Pd(l, r)]. To simplify

the analysis, we assume that the average probability of false alarm at the each of the phases

not in Sh is Pfa = δ. Then the average probability of the occurrence of k false alarms is

given by
(

K
k

)
P k

fa(1 − Pfa)
K−k. To see the reasoning behind this assumption, recall that the

decision threshold is chosen such that the maximum of the average false alarm probability over

all hypothesized phases not in Sh is not greater than δ. Thus there may be phases not in Sh where
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the average probability of false alarm is less than δ. The average probability of the occurrence of

k false alarms will involve a summation over
(

Ns−H
k

)
events with distinct probabilities making

the analysis intractable. The mean acquisition time obtained by making this assumption will be

an upperbound for the actual mean acquisition time.

The mean acquisition time conditioned on the starting point of the serial search is given by

Tacq(n) =
L∑

l=1

Hl∑

i=1

∞∑

j=0

K∑

k=0

T (n, j, k, l, i)

(
K

k

)

P k
fa(1− Pfa)

K−k

︸ ︷︷ ︸

T (n,j,l,i)

P j
MPh(l, i)

l−1∏

c=1

PM(c).(26)

Evaluating the innermost summation we get

T (n, j, l, i) =
K∑

k=0

[kTfa + (Ns − n + jNs + Al + i)T ]

(
K

k

)

P k
fa(1− Pfa)

K−k

= KPfaTfa + (Ns − n+ jNs + Al + i)T

= [Ns − n + j(Ns −H) + Al −
l−1∑

m=1

Hm]PfaTfa

+(Ns − n+ jNs + Al + i)T. (27)

Averaging over the number of misses j of the hit set we get

T (n, l, i) =
∞∑

j=0

T (n, j, l, i)P j
M

=
(Ns − n+ Al)(T + PfaTfa) + iT − PfaTfa

∑l−1
m=1Hm

1− PM

+
NsT + (Ns −H)PfaTfa

(1− PM)2
PM . (28)

Averaging over the position i within the lth cluster we get

T (n, l) =

Hl∑

i=1

T (n, l, i)Ph(l, i)

=
(Ns − n+ Al)(T + PfaTfa)− PfaTfa

∑l−1
m=1 Hm

1− PM
(1− PM(l))

+

∑Hl

i=1 iTPh(l, i)

1− PM

+
NsT + (Ns −H)PfaTfa

(1− PM)2
PM(1− PM(l)), (29)

where we have used the identity
∑Hl

i=1 Ph(l, i) = 1− PM(l). Finally, averaging over the cluster

index l we get
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Tacq(n) =

L∑

l=1

T (n, l)

l−1∏

c=1

PM(c)

= (Ns − n)(T + PfaTfa) +
NsT + (Ns −H)PfaTfa

(1− PM)
PM

+

∑L
l=1[Al(T + PfaTfa)− PfaTfa

∑l−1
m=1Hm](1− PM(l))

∏l−1
c=1 PM(c)

1− PM

+

∑L
l=1

∑Hl

i=1 iTPh(l, i)
∏l−1

c=1 PM(c)

1− PM
, (30)

where we have used the identity
∑L

l=1(1− PM(l))
∏l−1

c=1 PM(c) = 1− PM .

Now suppose that the initial value of the hypothesized phase falls in the last cluster of Sh

i.e. n ∈ {AL, AL + 1, . . . , BL}. Let m be the total number of phases evaluated for a particular

acquisition event. We can partition the set of acquisition events into two sets, one containing

those events for which m ≤ BL − n + 1 and the other containing those events for which

m > BL −n+1. The mean acquisition time for events in the first set is just mT and for events

in the second set it is Tacq(BL + 1) + (BL − n+ 1)T where Tacq(BL + 1) is obtained from (30).

Averaging over the total number of phases evaluated we get

Tacq(n) =

BL∑

i=n

(i− n+ 1)TPd(L, i)
i−1∏

j=n

(1− Pd(L, j))

+(Tacq(BL + 1) + (BL − n + 1)T )

BL∏

j=n

(1− Pd(L, j)). (31)

Now suppose the initial value of the hypothesized phase falls between the (L− 1)th and Lth

clusters i.e. n ∈ {BL−1 + 1, BL, . . . , AL − 1}. The mean acquisition time in this case is the sum

of the average time taken by the search process before it evaluates the first phase of the Lth

cluster and Tacq(AL), the mean acquisition time conditioned on the event that the search process

starts at the first phase of the Lth cluster which is obtained from (31).

Tacq(n) = (AL − n)(T + PfaTfa) + Tacq(AL) (32)
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Proceeding in this recursive manner, we obtain the conditional mean acquisition times Tacq(n)

for all values of n. The mean acquisition time is obtained by substituting these values in (24).

VII. RESULTS

In this section, we study the effect of the EGC window length G on the size of the hit set

|Sh|, the average probability of a miss PM and the mean acquisition time T̄acq by choosing the

following values for the system parameters. The TH sequence period Nth = 1024, Nh = 16, the

length of the channel response Ntap = 100, and the number of monocycles modulated by one bit

Nb = 8. We assume that Etot = −20.4 dB which is its mean value when the transmitter-receiver

(T-R) separation is 10 m [15]. We choose the power ratio r = −4 dB, decay constant ε = 16.1

dB and fading figures mk = 3.5− kTc

73
, 0 ≤ k ≤ Ntap − 1, which are their mean values given in

[15].

Fig. 4 shows the variation of the size of the hit set as a function of the EGC window length

for λ1 = λ2 = 10−3 and the fraction of energy needed for successful demodulation A = 0.5 and

0.75. We note that as the fraction of energy needed for successful demodulation is increased,

the size of the hit set decreases for a given EGC window length. This is due to the fact that

there are fewer hypothesized phases which satisfy a more stringent energy requirement. There

is an initial increase in the size of the hit set as G is increased because the EGC window is

able to collect the required amount of energy for hypothesized phases moderately away from

the true phase. Thus for small values of G, more hypothesized phases are included in the hit set

as G is increased. For large values of G, we observe that the size of the hit set does not change

significantly. This is due to the fact that for large G the energy of the adjacent bits collected by

the EGC window is significant, reducing the effective bit energy R2
b(∆τ ;h) and preventing the

inclusion of a significant number of hypothesized phases into the hit set.

Fig. 5 shows the effect of G on the probability of a miss PM for A = 0.5 and 0.75. For each

value of A, we plot PM for the average energy to noise ratio PrEtot

σ2 = −10 dB and −20 dB.

There is an substantial decrease in PM for moderate values of G but the decrease is insignificant

when G is large.
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To study the effect of G on the mean acquisition time T̄acq, we assume that the dwell time

is equal to one period of the TH sequence i.e. M = 1 and T = NthNhTc. The false alarm

penalty time Tfa is assumed to be 5T . Fig. 6 shows the mean acquisition time in seconds as a

function of G. For all the values of A and PrEtot

σ2 considered, the mean acquisition time increases

initially and then decreases significantly. For large G, the decrease in the mean acquisition time

is marginal. The minimum mean acquisition time is seen to be of the order of a second which

is too high from a practical system viewpoint. This is due to the large search space and the fact

that the serial search has to evaluate a considerable number of phases on the average before it

encounters the hit set. This issue can be alleviated by a parallel search strategy. We also observe

that the mean acquisition time does not depend on the average energy to noise ratio for large

values of G. This is due to the fact that a large EGC window collects a significant amount of

energy even when the hypothesized phase is not in the hit set. This energy is comparable to

the energy collected for phases in the hit set. Thus a threshold which constrains the maximum

average probability of false alarm to be less than δ also constrains the average probability of

detection to approximately the same value irrespective of the magnitude of the energy available

in the multipaths.

VIII. CONCLUSIONS

We have analyzed an acquisition sytem for UWB signals which performs EGC to utilize

the energy in the multipaths. By considering system performance subsequent to acquisition, the

set of phases which can be considered a hit was obtained. With mean acquisition time as the

metric for system performance, we observe that a significant gain can be obtained by a system

performing EGC. The far from practical values of the mean acquisition time obtained motivate

the need for a parallel search strategy and the development of acquisition schemes capable of

reducing the search space.
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APPENDIX

A. Average number of MPCs collected

The calculation of the expected value of rk(∆τ) is made easy by the observation that it is a

sum of Bernoulli distributed random variables.

rk(αTth + βTc) =

Nth−1∑

l=0

S∑

i=−Sm

G−1∑

j=0

χ(cl + j + β, cl+i+α + k + iNh)

︸ ︷︷ ︸

Bernoulli random variable

(33)

Hence the expected value is just the sum of the probabilities of the events of each Bernoulli

random variable taking the value 1.

Pr[
G−1∑

j=0

χ(cl + j + β, cl+i+α + k + iNh) = 1]

= Pr[
G−1⋃

j=0

(cl+i+α + k + iNh = cl + j + β)]

=

G−1∑

j=0

Pr[cl+i+α + k + iNh = cl + j + β]

=
G−1∑

j=0

∑

m

Pr[cl+i+α + k + iNh = m | cl + j + β = m]Pr[cl + j + β = m]

=
G−1∑

j=0

j+β+Nh−1
∑

m=j+β

Pr[cl+i+α + k + iNh = m | cl + j + β = m]Pr[cl + j + β = m]

=

G−1∑

j=0

j+β+Nh−1
∑

m=j+β

1

Nh
Pr[cl+i+α + k + iNh = m | cl + j + β = m]

=
G−1∑

j=0

j+β+Nh−1
∑

m=j+β

1

Nh
Pr[cl+i+α + k + iNh = m]

=

G−1∑

j=0

min{j+β+Nh−1,k+iNh+Nh−1}
∑

m=max{j+β,k+iNh}

1

N2
h

=
G−1∑

j=0

min{j+β,k+iNh}+Nh−1
∑

m=max{j+β,k+iNh}

1

N2
h

(34)

The sixth equality in the above calculation is due to the random sequence assumption which

does not hold if i + α = 0(mod Nth). If there is an i1 ∈ {−Sm,−Sm + 1, . . . , S − 1, S} such
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that i1 + α = 0 (mod Nth), we have

Pr[
G−1∑

j=0

χ(cl + j + β, cl+i1+α + k + i1Nh) = 1]

= U(β +G− 1, k + i1Nh)U(k + i1Nh, β), (35)

where U(a, b) = 1 if a ≥ b and 0 otherwise. In general, we have

rk(αTth + βTc) = NthU(β +G− 1, k + i1Nh)U(k + i1Nh, β)

+

Nth−1∑

l=0

S∑

i=−Sm
i6=i1

G−1∑

j=0

χ(cl + j + β, cl+i+α + k + iNh)

︸ ︷︷ ︸

Bernoulli random variable

. (36)

The expected value of the second term on the right hand side is calculated as before.

B. Noise Variance Calculation

We assume the TH sequence to be a random sequence to calculate the average noise variance

E[σ2
y ] of the noise collected by the correlator.

σ2
y

σ2
= MNthG+ 3M

Nth−1∑

l=0

(Overlap of lth and (l + 1)th windows)

+5M

Nth−1∑

l=0

(Overlap of lth, (l + 1)th and (l + 2)th windows)

+7M

Nth−1∑

l=0

(Overlap of lth, (l + 1)th, (l + 3)th and (l + 4)th windows )

+(2k − 1)M

Nth−1∑

l=0

(Overlap of lth, (l + 1)th, . . . , (l + k)th windows), (37)

where k = dG−1
Nh

e. Overlap between two consecutive EGC windows is given by

G−1∑

j=0

U(cl +G− 1, cl+1 +Nh + j). (38)

Similarly, overlap between three consecutive EGC windows is given by

G−1∑

j=0

U(cl +G− 1, cl+2 + 2Nh + j)U(cl+1 +Nh +G− 1, cl+2 + 2Nh + j). (39)
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Noting the fact that the second term in the above product is nonzero whenever the first term is

nonzero the equation for the overlap reduces to

G−1∑

j=0

U(cl +G− 1, cl+2 + 2Nh + j). (40)

So in general the overlap between i consecutive windows is given by

G−1∑

j=0

U(cl +G− 1, cl+i−1 + (i− 1)Nh + j). (41)

The expected value of the overlap between i consecutive windows is then given by

∞∑

k=1

kPr[Overlap of i consecutive windows = k], (42)

where

Pr[Overlap of i consecutive windows = k]

= Pr[
G−1∑

j=0

U(cl +G− 1, cl+i−1 + (i− 1)Nh + j) = k]

= Pr[cl +G− 1 = cl+i−1 + (i− 1)Nh + k − 1]

= Pr[cl +G = cl+i−1 + (i− 1)Nh + k]

=

Nh−1∑

j=0

Pr[cl+i−1 + (i− 1)Nh + k = j +G | cl = j]Pr[cl = j]

=

Nh−1∑

j=0

1

Nh

Pr[cl+i−1 + (i− 1)Nh + k = j +G | cl = j]

=

Nh−1∑

j=0

1

Nh

Pr[cl+i−1 + (i− 1)Nh + k = j +G]

=

min{Nh−1,G−(i−1)Nh−k+Nh−1}
∑

j=max{0,G−(i−1)Nh−k}

1

Nh
Pr[cl+i−1 = j]

=

min{0,G−(i−1)Nh−k}+Nh−1
∑

j=max{0,G−(i−1)Nh−k}

1

N2
h

(43)

The expected overlaps can be substituted in (37) to get the average noise variance.
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Fig. 1. Illustration of situations where the receiver may perform adequately even when it locks onto a non-line-of-sight path
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Fig. 3. Illustration of typical hit sets
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