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UCLA Low-Power Transceiver Program

∑ Low-Voltage Custom Analog & Digital CMOS
∑ Monolithic CMOS 915 MHz Receive/Transmit Path
∑ Two-chip Design; Minimum Discrete Components

Low Power Dissipation

Up to 160 kb/s ∑ Space Diversity with Multiple Antennas
∑ Frequency Diversity with Spread-Spectrum
∑ Time Diversity with ECC/Interleaving

Robustness

Means: Investigate analog, digital, and antenna
technologies, coupled tightly to system design

Objective: Low-power, handheld, robust transceivers for
indoor and mobile personal communications



The UCLA Frequency-Hopped
Spread-Spectrum CMOS Transceiver
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Performance Specifications of Handset

 

Power Dissipation of Handset
 

225 mW in receive, 300 mW in transmit
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902-928 MHz (unlicensed ISM band)

 

Radiated Power

 

20 mW (max); 20 µW (min)
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2 to 160 kb/s (variable)

 

Duplexing
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Multiple Access Method
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Coding
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Modulation
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3 V (max)

 

IC Technology

 

1-µm bulk CMOS

 

Receive Antennas
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Spread-Spectrum Systems:
Hardware Implications
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n Frequency Diversity by making chip-
rate >> symbol rate

n Equalization at chip-rate ➭ High-
speed signal processing required

n Coherent receiver most common

n Main advantage: SNR gain with
coherent detection, optimum
modulation

n Limitation: High complexity

n Covers wide bandwidth with low
hop-rate

n Equalization at hop-rate only

n Simple binary FSK modulation may
be used

n Non-coherent receiver is simple

n Main advantage: Low-power receiver

n Limitation: Sub-optimal channel
capacity

Direct Sequence Frequency Hopped



Diversity Techniques

n Antennas receive uncorrelated signals

n Use space and polarization diversity

n Code-Division Multiple Access (CDMA); Direct Sequence
OR Frequency Hop

n Time-Division Multiple Access (TDMA); Equalization

n Coding

n Interleaving

e Power Control

e Multiple Antennas

e Time Diversity

e Frequency Spreading



Power Amplifier

• Amplifier attains 42% power conversion efficiency
at +15 dBm output power

• Binary-weighted array of FETs gives 36 dB of
power control (6-b word)

• Inductively-loaded preamp drives FETs above 3-V
supply

• Off-chip matching network filters out harmonics
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Frequency-Hopped Synthesizer

• DDFS produces samples of a sinewave at a frequency selected by 11-b word;
instantly agile frequency source

• DDFS output range is 0➞13 MHz; adding up-converted outputs produces SSB
915➞928 MHz; subtracting them produces 902➞915 MHz

• 8-b matching required between channels for adequate image suppression
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10-b, 80 MHz D-A Converter
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Charge Redistribution DAC Q-to-V Buffer

I & Q DDFS/DAC
27 mA at 3V, 80 MHz

• Low-power through differential implementation using
quasi-passive charge-redistribution pipelines

• Linearity limited by capacitance mismatch, voltage-
dependent parasitics

• Glitch free!
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Measured DDFS/DAC Spectral Outputs

62 dB

50 MHz Sample Rate
3 V Supply

0 5 MHz 0 25 MHz

50 MHz Sample Rate
3 V Supply 

 

16.715 MHz

57 dB

–57 dBc

•

•

•

• Spurious level as predicted
• set by capacitor mismatch

• Inter-cell capacitance causes
non-linearity at high frequency



Baseband Tone-Select Filter
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• 5th-order Elliptic LPF with 200-kHz cutoff
implemented as SCF; dissipates 15 mW from 3-
V at 5 MHz sample rate. Operates up to 20 MHz.
60 dB stopband attenuation.

• LPF sets noise bandwidth of entire system
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Measured Filter Performance

· 70 nV/Hz in passband

· 4.6 mA from 3V

· 200 pF total on-chip
capacitance



Digital Tone Detector
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• 1-bit oversampled correlator (programmable oversample rate)

• Multipliers are switches, integrators are accumulators

• 1.9 sq mm active area implementation will dissipate 2 mW



Rationale Underlying UCLA
Low-Power Transceiver

• Radio paging receiver is the most evolved low-energy wireless device
today. Receives 500 to 1000 b/s at 400 MHz to 900 MHz.

• Long battery life obtained through very high level of integration (two
chips) and optimized system design

• UCLA transceiver uses this as a model. Key extensions are:

♦ Binary FSK modulation of carrier (like pager)

♦ Frequency-hopped spread-spectrum

♦ Simple demodulation after de-hopping (like pager)

♦ Two-chip transceiver (like paging receiver)

✓ Two-way communication

✓ Much higher data rate ➭160 kb/s (programmable)

✓ Robust operation in multipath environment ➭ Diversity

✓ Large multi-user capacity ➭ CDMA spread-spectrum

Features



New Technology for Etching Inductors

Need fast etchant in p+ doped substrates

Should minimally etch exposed metallization

Xenon DiFluoride (XeF2) gas-
phase etchant

• Etches hemispherical pits
anisotropically through array of small
holes in oxide

• Depth of etching may be visually
monitored through semi-transparent
nitride



1 GHz Continuous-Time LNA and Mixer

A demonstration of the fundamental capability of MOSFETs to attain
low noise and wide dynamic range, at low power

1-µm CMOS operating at 3V; matched to 50W at input

Drain 8 mA from 3V
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LNA Design Rationale
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LNA + mixer drain 8 mA from 3 V

Measured fT vs VGS-Vt



Channel-Select Filter

Current drain of active filter ~ 3.5 mA

Input-referred noise ~ 40 nV/!!!!!Hz

Capacitor spread = 108

Input capacitor ~ 0.45 pF

Output compression point ~ 2 V ptp
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Increasing DDFS/DAC Clock Frequency

• Eliminate two clock phases, fffff4 and fffff5, in buffer driving
on-chip capacitive load

• Rescale DDFS. Carry-select adder in accumulator.

• Use open-loop buffer to drive polyphase filter through
four-FET switch upconversion mixers

• 3rd-order distortion, including buffer < —45 dB
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Polyphase Filter for Sideband Selection

LO

I

Q
0˚

90˚

Desired
Desired

Im
ag

e
Im

ag
e

LO

O Hz LO

–
+

IIIII

IIIII

QQQQQ

QQQQQ

~
0
˚

~
1
8
0
˚

~270˚

~90˚

600 WWWWW
0.3 pF

• Extension of the RC-CR phase-shift network,
with four-phase inputs and outputs

• Reinforces one sequence of quadrature phases
(clockwise, say), while attenuating the other

• Robust against component mismatches (order-
of-magnitude better than single-phase network)

• Similarly selects one sideband after
upconversion (60 dB rejection with 10° phase
error in LO)



Transmitter Test Chip
6×3.8 mm active area

65 mA active current



Transmitter Output Spectra

No off-chip filter at power amplifier output

Measurements at mid-range level +5 dBm



Current Drain in Transceiver Parts
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Measured Performance of Front-End
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