
ACTIVE State Editor
Training Guide

ALDEC Inc.
July 1996

ACTIVE State Editor Training Guide 2

Introduction
This tutorial is intended for the ACTIVE-CAD and Xilinx Foundation users. It
presents the State Editor application used for graphical entry of ABEL and VHDL
designs. This tutorial presents only the VHDL entry. For more detailed
information and ABEL design issues please refer to the complete documentation
of State Editor and advanced tutorials.

Comparison of State Machine Description Methods
Let’s consider very simple state machine controlling traffic lights. The most
obvious method of description is verbal description. Our state machine can be
described as follows:

When red light is on and timer signals that green light should be lit
(GO_GREEN signal goes to High state) turn on GREEN signal and turn
off other signals. When green light is on and timer signals that yellow light
should be lit (GO_YELLOW signal goes to High state) turn on YELLOW
signal and turn off other signals. When yellow light is on and timer signals
that red light should be lit (GO_RED signal goes to High state) turn on
RED signal and turn off other signals.

State diagram is a graphical method of state machine description. State
diagram for lights controlling machine is shown below:

ACTIVE State Editor Training Guide 3

State machines can be also described using HDL languages such as VHDL,
Verilog and ABEL. VHDL description of lights controlling machine is shown
below:

entity lights is
 port (CLK: in STD_LOGIC;
 GO_GREEN: in STD_LOGIC;
 GO_RED: in STD_LOGIC;
 GO_YELLOW: in STD_LOGIC;
 LIGHT_GREEN: out STD_LOGIC;
 LIGHT_RED: out STD_LOGIC;
 LIGHT_YELLOW: out STD_LOGIC);
end;

architecture lights_arch of lights is

type LIGHTS_type is (GREEN, RED, YELLOW);
signal LIGHTS: LIGHTS_type;

begin

process (CLK)
begin

if CLK'event and CLK = '1' then
case LIGHTS is

when GREEN =>
if GO_YELLOW='1' then

LIGHTS <= YELLOW;
end if;

when RED =>
if GO_GREEN='1' then

LIGHTS <= GREEN;
end if;

when YELLOW =>
if GO_RED='1' then

LIGHTS <= RED;
end if;

when others =>
null;

end case;
end if;
end process;

LIGHT_GREEN <= '1' when (LIGHTS = GREEN) else
 '0' when (LIGHTS = RED) else
 '0' when (LIGHTS = YELLOW) else
 '0';

LIGHT_YELLOW <= '0' when (LIGHTS = GREEN) else
 '0' when (LIGHTS = RED) else
 '1' when (LIGHTS = YELLOW) else
 '1';

LIGHT_RED <= '0' when (LIGHTS = GREEN) else
 '1' when (LIGHTS = RED) else
 '0' when (LIGHTS = YELLOW) else
 '0';

end lights_arch;

ACTIVE State Editor Training Guide 4

Main advantages and disadvantages of state machine description methods are
listed in the table shown below.

Verbal Description State Diagram HDL Description
• compact • very compact • lengthy
• easy to read by

humans
• very easy to read by

humans
• hard to read by

humans
• difficult to implement • easy to implement • easy to implement

• self-documenting • requires
documentation

The Purpose of This Tutorial
This tutorial will teach you how to use Finite State Machine Editor for entering
state machine diagram and logic synthesis of the machine. We assume that you
are familiar with other ACTIVE-CAD applications: Project Manager and
Simulator.

Required Software
1. ACTIVE-CAD 2.2 or Xilinx Foundation v. 6.0.x
2. Metamor XVHDL synthesis
3. XACT software for implementation

Enabling the State Editor in Xilinx Foundation Software

Xilinx Foundation Project Manager has State Editor program button disabled by
default. To enable State Editor you should add a setting to susie.ini file.

Select File | Configuration in Project Manager and click View Ini File button in
Configuration window. Insert new section below [Paths] section:

[Flow]
FSM_X6=On

Save susie.ini file and quit text editor. Restart Project Manager - State Editor will
be enabled as shown below.

ACTIVE State Editor Training Guide 5

Creating a State Diagram
The design which will be created in this tutorial is a machine which plays the
Blackjack game. The Xilinx 4003 device is used to target the design.
The following is the description of how the design should behave:

The purpose of the game is to request a desired number of cards by
showing the SAY_CARD output signal 1 and not exceed the total sum of
cards more than 21. Each card can be a number between 2 and 11,
where 11 is called ACE and can be counted as 1 if desired. The arrival of
the card is flagged on the signal NEW_CARD changing from 0 to 1.

The machine should request additional cards when the total sum of cards
is less then 17 and should flag a SAY_BUST signal when it exceeds 21.
In case the total score is between 17 and 21 the machine should flag a
SAY_HOLD signal.

The total score should be shown on the TOTAL output. After reaching
SAY_HOLD or SAY_BUST the machine should stay in that state until
NEW_GAME signal is flagged on the input.

The NEW_GAME signal resets the machine.

Implementation
The machine will be implemented by drawing a state diagram and then
generating VHDL code, synthesizing into Xilinx netlist and then implementing
using XACT software.

1. Creating New BLKJACK Design
• Start Foundation Project Manager
• Create new project - select File | New Project and enter BLKJACK as the

project name in New Project window

ACTIVE State Editor Training Guide 6

2. Opening State Editor

• Click button in design flow section of Project Manager
• Click Use FSM Design Wizard button in State Editor Welcome Window

3. Using FSM Design Wizard
FSM Design Wizard allows creating state diagram file, selecting hardware
description language to which diagram will be translated, definition of ports, etc.
To create state diagram pattern follow instructions given below:

• Click Next > in Design Wizard welcome window

ACTIVE State Editor Training Guide 7

• Select VHDL language in Design Wizard - Language window and click Next >
button

• Type BLKJACK as the file name in Design Wizard - Name window and click
Next > button. Note that the default file extension of state diagrams is ASF. In
this case the file will be called BLKJACK.ASF.

ACTIVE State Editor Training Guide 8

• Design Wizard - Ports window is displayed. It is used to add input and output
signals used in your state machine.

To add new port in that window:
- click New
- type port name in Name: box
- choose port direction by selecting one of the options in Direction box.
Port names are displayed in the box above New button and in the symbol
preview area.

ACTIVE State Editor Training Guide 9

• Using procedure described above define:

◊ input ports:
 NEW_GAME
 NEW_CARD
 CARD[3:0]

◊ output ports:
 SAY_CARD
 SAY_HOLD
 SAY_BUST

• Click Next > when all ports listed above are defined. See picture below for

reference.

ACTIVE State Editor Training Guide 10

 NOTE: The Advanced button displays Advanced Port Settings window below
and allows to specify the type of port.

You can define a selected signal as clock, and for the output port you can
specify if they are combinatorial or registered. Registered ports hold the
value set in an additional register and the combinatorial outputs change any
time the input conditions change.

 NOTE: State Editor support only synchronous state machines, which means
that all transitions from one state to another are performed only at the clock
transitions. Since no clock was defined the Wizard will prompt you for
creating a clock signal.

• Design Wizard suggests adding CLK port -

ACTIVE State Editor Training Guide 11

click Yes to add that port

• In Design Wizard - Machines window select One machine on the diagram

and click Finish.
• NOTE: You can use State Editor to design concurrent state machines which

are translated into separate processes in VHDL.

• The new state diagram created by the Design Wizard is shown below.

ACTIVE State Editor Training Guide 12

4. Adding Extra Ports
In case you did not add some ports in the FSM Wizard you can do it afterwards
using the Add port button. In this case the output port showing the total score of
the game was not added.

• Click (Output Port) button, then click above the SAY_BUST port
symbol to add new output port.

• Click right mouse button on the port symbol you have just placed on the
diagram and select Properties from the local menu

• In Port Properties window type TOTAL in Name: box, select 4:0 in
Range: box, select Output and Registered options

• Click OK

ACTIVE State Editor Training Guide 13

NOTE: The TOTAL port has to have range from 0 to 31 which requires
5 bits of data [4:0]

 New output ports definition section should look the following:

5. Defining Additional Variables
In our machine there will be a need to know if one of the cards is an ACE. This
will be helpful to count ACE as 1 instead of 11 in case the score exceeds 21.
The following procedure describes how to define a new Ace variable.

• Double click //machine DECLARATIONS text below Sreg0 text

ACTIVE State Editor Training Guide 14

NOTE: If, for some reason, //machine DECLARATIONS text is missing, you

can still add machine declarations by clicking (Declarations) button

• In the edit box

type
variable Ace: boolean;

 below //machine DECLARATIONS text
• Click right mouse button outside edit box.

Correct declarations should look the following:

ACTIVE State Editor Training Guide 15

6. Adding a Reset State
The first state that will be added will be used to initialize the machine when the
new game is started. It will be used to set initial values of all outputs.

• Click button and place state symbol in the middle of the sheet, below
machine declarations (use left mouse button to place state, right mouse
button to cancel state mode)

• Double click S1 state name to open edit box

and replace S1 by Start, then click outside the edit box. The state with new
name should look like this:

• Select FSM | Machines | Sreg0 from the menu to display Machine
Properties window. This window is used to define global settings of the
selected state machine.

ACTIVE State Editor Training Guide 16

• Replace Sreg0 with Action in the Name: box. This sets the name of the state
machine signal used to store the current state in VHDL.

• Click on the Reset tab and select NEW_GAME as the reset signal name,
Start as the reset state, synchronous reset type, and high active level. This
defines that the NEW_GAME will be used as machine reset and when it is
activated the machine will enter the Start state.

ACTIVE State Editor Training Guide 17

 Click OK button - state diagram should look as below:

 NOTE: The reset transition defines a reset condition for
documentation purposes. The reset symbol is not a state and it indicates
that this transition will be executed regardless of the current state if the
condition is met.

7. Adding initialization actions
Once the reset condition is met the machine will enter the Start state. To define
the actions that should be performed when this happens we will create an entry
action. The entry action is always attached to the top of the state symbol and
indicated that the code specified is executed once when the machine enters this
state.

• Click (Entry Action) button, then position ‘dot end’ of the mouse pointer
over Start state and click left mouse button. Type:

Ace := false;
TOTAL <= "00000";
SAY_CARD <= '0';
SAY_HOLD <= '0';
SAY_BUST <= '0';

 in the edit box and click right mouse button outside edit box.

 Note that you have to use the VHDL syntax and add semicolons after each

line. Also note that the assignment operator <= can be used with ports and
signals, and the := operator is used with variables.

 Defined entry actions are shown below:

ACTIVE State Editor Training Guide 18

 NOTE:
 Combinatorial output port assignments in the reset state are also used as

default values in other states. This means that the output will be set to the
default value in all states where the value was not explicitly indicated. In this
example SAY_BUST will be ‘0’ in all states unless you add an action
SAY_BUST <= ‘1’.

8. Adding a state to request a card
Once the reset is performed that machine should start with requesting a card.
This will be the Hit_me state.

• Add Hit_me state below Start state (use procedure described above for Start

state)

• Click (Transition) button, click Start state, click Hit_me state, then click
right mouse button.

NOTE: Unconditional transition from Start state to Hit_me state has been

ACTIVE State Editor Training Guide 19

defined. This transition is executed in the next clock cycle after entering the
Start state (it means that the reset state will last for one clock cycle).

• To flag the request for a new card the SAY_CARD should be set to ‘1’. Note
that this signal should remain active all the time while in this state. For that
reason we have to use state action and not entry action. State actions are
executed on each clock cycle as long as the machine remains in this state.

• Click (State Action) button, then position ‘dot end’ of the mouse pointer
over Hit_me state and click left mouse button. Type

SAY_CARD <= '1'
 in the edit box and click right mouse button outside edit box. State diagram

after this operation is shown below:

9. HDL Code Generation
At this point some portion of the state machine has been created. Before the
design gets bigger we will inspect the code that is being generated to show how
the diagram elements correspond to the generated code.

NOTE: HDL Code generation checks for some diagram problems but does not
checked your VHDL statements. The full syntax check will be performed later
when the design is synthesized.

• Press HDL Code Generation from the Synthesis menu to generate HDL
code; answer Yes when asked if you want to view generated code.

It is essential that you can relate the code that is being generated to the
elements on the drawing. State editor uses standard templates to create

ACTIVE State Editor Training Guide 20

the VHDL design and understanding the structure of the VHDL is very
helpful when debugging the design when you use a VHDL simulator.

VHDL code generated by the State Editor can be divided into several
sections. Library section is always added at the beginning and provides the
access to IEEE, METAMOR and SYNOPSYS libraries.

library IEEE;
use IEEE.std_logic_1164.all;

-- SYNOPSYS library declaration
library SYNOPSYS;
use SYNOPSYS.std_logic_arith.all;
use SYNOPSYS.std_logic_unsigned.all;

library METAMOR;
use METAMOR.ATTRIBUTES.all;

Entity declaration section lists all ports defined on the state diagram.
entity blkjack is
 port (CARD: in STD_LOGIC_VECTOR (3 downto 0);
 CLK: in STD_LOGIC;
 NEW_CARD: in STD_LOGIC;
 NEW_GAME: in STD_LOGIC;
 TOTAL: out STD_LOGIC_VECTOR(4 downto 0);
 SAY_BUST: out STD_LOGIC;
 SAY_CARD: out STD_LOGIC;
 SAY_HOLD: out STD_LOGIC);
end;

Global declarations section defines:
◊ enumerated type and state variable of this type for every machine on your

diagram.
◊ objects and actions common to all machines.

architecture blkjack_arch of blkjack is

--auxilary diagram declarations
--diagram DECLARATIONS;

-- SYMBOLIC ENCODED state machine: Action
type Action_type is (Hit_me, Start);
signal Action: Action_type;

begin
--concurrent signal assignement
--diagram ACTIONS;

Machine declarations section defines objects local to each machine
(process).

process (CLK)
--auxilary machine declarations
--machine DECLARATIONS
variable Ace: boolean;

ACTIVE State Editor Training Guide 21

Reset definition section
begin

if CLK'event and CLK = '1' then
if NEW_GAME = '1' then

Action <= Start;
TOTAL <= "00000";
Ace := false;

Machine action description section
else
case Action is

when Hit_me =>
when Start =>

Action <= Hit_me;
when o thers =>

null;
end case;
end if;

end if;
end process;

Output port assignment section
-- signal assignment statements for combinatorial outputs
SAY_CARD <= '1' when (Action = Hit_me) else
 '0';

SAY_HOLD <= '0';

SAY_BUST <= '0';

end blkjack_arch;

10. Receiving and Handling of the New Card
Once the new card is requested the machine should wait until it is received. The
arrival of the new card will be marked by the NEW_CARD signal. The following
will add a next portion which performs this action.

• Add new state below Hit_me state
• Rename this new state to Got_it using State Properties:

◊ click right mouse button inside state bubble, but not the state name
◊ select Properties in the local menu
◊ type Got_it in Name: box

ACTIVE State Editor Training Guide 22

◊ click OK
• Add transition from Hit_me to Got_it state
• Add condition to the recently drawn transition:

◊ click (Condition) button
◊ click the transition line
◊ type NEW_CARD='1' in the edit box
◊ click right mouse button outside edit box

NOTES:
⇒ state machine remains in Hit_me state until NEW_CARD=’1’ condition is

met
⇒ SAY_CARD output returns to the default ‘0’ value when the machine exits

Hit_me state. This is because the default value ‘0’ was defined in the reset
state.

⇒ all actions are performed on rising edge of the CLK signal. This is also
defined in Machine properties and can be changed if desired.

• Once the card was received, the total score needs to be updated. Also the

card will be checked if it was 11 and if so the ACE flag will be set.
• Since these action need to be executed only once when entering the state an

entry action will be used.

• To assign entry actions to the state, you can also use Actions card in State

Properties window:
◊ click right mouse button inside state bubble
◊ select Properties in the local menu
◊ click Actions tab
◊ type

TOTAL<=TOTAL+CARD;
Ace:=(CARD=11) or Ace;

in Entry box

ACTIVE State Editor Training Guide 23

NOTE:
Actions described above must be defined as entry actions. Otherwise the
total will be incremented on each active clock edge as long as machine
remains in Got_it state

State diagram should now look the following:

11. Analyzing the Total Score
Once the total score is updated the machine has to wait for the SAY_CARD
signal back to ‘0’. Then the total score will be tested. If it is less then 17 then
machine should request a new card and go back to the Hit_me state.

ACTIVE State Editor Training Guide 24

• Add Test16 state below Got_it state
• Add transition from Got_it state to Test16 state
• Add NEW_CARD=’0’ condition to the recently defined transition

NOTE:
This prevents state machine from using the same card more than once.

After completing this step, state diagram looks like this

• Add Test21 state below Test16 state
• Add transition from Test16 state to Test21 state with TOTAL > 16 condition
• Add transition from Test16 state to Hit_me state with @ELSE condition

NOTE:
@ELSE transition is executed when no other conditions are met in this state.
This transition will be executed if TOTAL value is 16 or less and will cause
the machine to request a new card in the Hit_me state.

ACTIVE State Editor Training Guide 25

State diagram with 5 states should look the following:

12. Testing the Final Score
Once the machine gets to the Test 21 state the total score is 17 or more. Now
the machine has to test if it did not exceed 21. If it did not it will flag the
SAY_HOLD signal if it has more than 21 the SAY_BUST signal should be
flagged and the machine has lost the game. Before flagging the SAY_BUST
signal the machine can check if one of the previous cards was an ACE and then
it may decrement the total value by 10 to recover from the bust situation.

• Add two final states: Bust and Hold.

ACTIVE State Editor Training Guide 26

• Add transition from Test21 state to Bust state and from Test21 state to Hold
state

• Add TOTAL < 22 condition to the Test21 ⇒ Hold transition
• Add SAY_HOLD <=’1’ state action to Hold state
• Add transition from Test21 state to Test16 state with Ace condition

NOTE:
Since Ace is Boolean variable, no relational operators are required in the
condition text

• Add TOTAL <= TOTAL-10 action to the recently defined transition (use
button, click transition line and type action text)
NOTE:
Transition actions allow avoiding redundant states. If you did not assign this
action to a transition than another state would be created to execute TOTAL
<= TOTAL-10 action.

• Add @ELSE condition to the Test21 ⇒ Bust transition
• Add SAY_BUST <=’1’ state action to Bust state

State diagram with all states, transitions, conditions, and actions should look
like this

13. Assigning Condition Priorities
• NOTE that in Test21 state both TOTAL < 22 and Ace conditions can be met

at the same time. In that case behavior of the machine depends on condition

ACTIVE State Editor Training Guide 27

evaluation sequence. To avoid confusion, you should assign different
priorities to transitions. Because our machine should first check if TOTAL is
less than 22, assign priority 1 to Test21 ⇒ Hold transition and priority 2 to
Test21 ⇒ Test16 transition.

To change transition priority:
◊ click transition line
◊ click right mouse button
◊ select Priority from the local menu
◊ select required priority level

NOTE:
Transitions without displayed priority are executed last

14. Selecting State Encoding
When state machines are compiled into logic the current state is stored in a
register (series of flip-flops). The values each state is assigned in the register
may have an effect in the reliable behavior of the state machine. Incorrect
selection of state encoding can create hazard conditions where a glitch in the
combinatorial logic may cause the state machine to enter a wrong state. The
recommended encoding type for all FPGAs is One-Hot which assigns values to
each state so that only one bit of a register is active ant any time. One hot
encoding, however, consumes more flip flops because each state requires a bit
in a register and for that reason is not recommended for CPLDs which lack flip
flop resources. State Editor supports one-hot and binary encoding. Other types
of encoding can be created by manually assigning the codes to each state.

In this tutorial a binary encoding will be used for simplicity of analysis in the
simulator.

ACTIVE State Editor Training Guide 28

• Select FSM | Machines | Action and select binary encoding in Machine
Properties window

NOTE:
Symbolic encoding option allows synthesis tool to select state encoding
method. Metamor XVHDL defaults to binary encoding if the codes are not
assigned any values.

• Select Tools | Preferences and check Display State Codes option

• Save the diagram

15. Compiling the Design
• Save the diagram
• Select Project | Add to project in State Editor Menu to add BLKJACK.ASF

diagram as top-level document in your project. This will add the top level

document in Project Manager hierarchy navigator.

ACTIVE State Editor Training Guide 29

• Select Synthesis | Options

and deselect X-BLOX and Improvex options to speed up the synthesis
process.

• Select Synthesis | Synthesize option (or click button)

16. Locating and Correcting Errors
• Note that Signal 'TOTAL' is not readable as it has mode OUT.

error is reported every time TOTAL appears on the right side of signal
assignment. This is because the output ports cannot be used for reading.
Instead the bidirectional port should be used.

• To correct this error, click right mouse button on TOTAL port symbol, select
Properties and change port type to Bidirectional

• Restart synthesis - this time it should complete without errors
• Note that state codes appeared inside state bubbles
• Select Synthesis | View Report and check how many flip-flops were used

for synthesis.

NOTE: If Improvex is used during synthesis, synthesis report also includes
mapping information.

Synthesis report is very important, because it shows how much resources are
used by the design. Making some changes on the diagram may drastically
increase or decrease the number of flip-flops and CLBs.

17. Functional Simulation
• Minimize State Editor

• Click button in Project Manager design flow section

ACTIVE State Editor Training Guide 30

• Select Signal | Add Signal and double-click on CLK, NEW_GAME,
NEW_CARD, (CARD0,CARD3), (TOTAL0,TOTAL4), SAY_BUST,
SAY_CARD, SAY_HOLD, and (ACTION2,ACTION0) signals to select them
for observation in Waveform Viewer

 NOTE: ACTION bus represents the state variable of Action machine. It
enables monitoring of the current machine state.

• Selected signals should look like on the picture below

NOTE: To ensure correct display of bus values, check if ‘∗’ (asterisk) is
displayed by the bus element with index 0. In asterisk is not displayed there,
select all bus members by clicking their names while holding Shift key and
select Signal | Bus | Direction

• Select Utilities | View | Hex Buses
• Select Stimulator | Add Stimulators and assign B0 stimulator to CLK input

ACTIVE State Editor Training Guide 31

• Click Formula button in Stimulator Selection window and define F0, F1, and
F2 stimulators:

◊ Assign (H20L580)10 formula to F0 stimulator
◊ Assign (L80H20)10 formula to F1 stimulator
◊ Assign [0]100[a]100[3]100[8]100 formula to F2 stimulator
◊ Click Close

• Attach F0 stimulator to NEW_GAME input, F1 stimulator to NEW_CARD
input, and F2 stimulator to CARD input bus

• While holding Shift key select CARD and TOTAL buses
• Select Signal | Bus | Display Decimal.

Signal names in Waveform Viewer should look like on the picture below

• Simulate using Step or Long button until machine signals SAY_HOLD or
SAY_BUST.
NOTE:
Remember that ACTION bus value is equal to current state code.
You can change sequence of cards by editing F2 stimulator formula.

ACTIVE State Editor Training Guide 32

Sample simulation results are shown below.

Conclusion
As presented in this tutorial State Editor is a very powerful tool for creating
control logic in VHDL. The graphical diagrams can be used for better
documentation of the design and to generate efficient and reliable synthesis
results.

Quiz
The design implementation presented in this tutorial has a logical flaw. Please try
to find a sequence of events that will cause it to work incorrectly. To find out the
answer you can send email to support@aldec.com.

State Editor Resources
The complete documentation of the State Editor is provided on the Foundation
CD in the file ACTIVE\DOC\SYNTOOLS.PDF.

For additional sample designs, documentation and updates to the State Editor
please consult the ALDEC Website at www.aldec.com.

	ACTIVE State Editor Training Guide
	Introduction
	Creating a State Diagram
	Creating New BLKJACK Design
	Opening State Editor
	Using FSM Design Wizard
	Adding Extra Ports
	Defining Additional Variables
	Adding a Reset State
	Adding initialization actions
	Adding a state to request a card
	HDL Code Generation
	Receiving and Handling of the New Card
	Analyzing the Total Score
	Testing the Final Score
	Assigning Condition Priorities
	Selecting State Encoding
	Compiling the Design
	Locating and Correcting Errors
	Functional Simulation

	Conclusion

