
Stamp Applications no. 3 (May ’95):

Adapt a Keypad for Pro-Quality Data Entry;
Included Software Lets Stamp “Type” on a PC

Hacking a Commercial Keypad, by Scott Edwards

THIS month’s applications make an off-the-shelf
numeric keypad for PCs do double duty; first as
a serial data-entry terminal for the Stamp, then
as a sneaky software method of getting Stamp
data into your favorite PC applications, like
spreadsheets and word processors.

I’ve wanted to manufacture a Stamp-
compatible keypad, but the cost of starting from
scratch is daunting. A decent keypad requires
good switches and a sturdy enclosure, both of
which are very expensive in the small quantities
that the Stamp aftermarket might use. There
are occasional surplus bargains, but there’s also
the risk that the supply will dry up on the very

day that Ultra-Mega Industries Inc. places a big
order.

I recently found an accessory keypad for
laptop computers—an ORTEK MCK-18S/N,
made in Taiwan. It communicates with and is
powered by a PC’s serial port. Included software
redirects data from the keypad to the keyboard
buffer, so that it functions just like keys on the
standard keyboard. The pad has 18 buttons,
consisting of the numbers 0 through 9, decimal
point, Escape, Num Lock, Enter, and the math
operators (/, *, -, +). The keys are quality Alps
switches with standard PC-style keycaps. The
unit is enclosed in a nice flat-black case.

Esc Num
Lock

/ *

7 –

+

*

*

8 9

5

Home Pg Up

4 6

1
End

2 3
Pg Dn

.
Del

0
Ins

Enter

DB9
Female

DB9
Male

DB9 Pin

6

Stamp

2

5

3

+5V

pin 0

GND

GND

ORTEK Serial Keypad

Figure 1. Connecting the serial keypad to the Stamp for data entry requires
just one I/O pin plus a few microamps from the Stamp’s power supply.

Stamp Applications no. 3, May 1995

2

At $49 (see the source list), the keypad isn’t
cheap, but it’s not unreasonably expensive
either. So I bought one and proceeded to hack it.
Here’s what I found:

The heart of the keypad circuitry is a PIC
microcontroller, just like the Stamp’s own
processor. This one runs at a leisurely 38.4 kHz;
less than 1/100th the speed of a Stamp. This
limits current draw to the 10s of microamps. It
also helps the keypad meet FCC limits on radio
interference.

When you press one of the pad’s keys, its PIC
sends a one-byte code (generally a lower-case
letter) to the PC via an AT-style DB-9 serial
connector. The serial data is sent at 1200 baud,
with no parity, 8 data bits, and 1 stop bit (N81).
If you hold down a key, the PIC waits a moment,
then transmits a string of the same one-byte key
code in rapid-fire fashion to simulate the
“typeamatic” response of the standard keyboard.
When you release a key, the PIC sends a
different one-byte code (generally the upper-case
version of the key-down code). Table 1
summarizes the codes.

Table 1. Key Codes Used
by Unmodified ORTEK Keypad

Key
Key-Down
(ASCII)

Key-Up
(ASCII)

1 ‘ (96) @ (64)
2 a (97) A (65)
3 b (98) B (66)
4 c (99) C (67)
5 d (100) D (68)
6 e (101) E (69)
7 f (102) F (70)
8 g (103) G (71)
9 h (104) H (72)
Esc i (105) I (73)
/ j (106) J (74)
* k (107) K (75)
- l (108) L (76)
+ m (109) M (77)
. (point) n (110) N (78)
0 (zero) o (111) O (79)
Enter t (116) T (84)
Num Lock y (121) Y (89)

From an electrical standpoint, the keypad is
wired to derive power from and send signals to
the PC serial port. Its interface generates
bipolarity RS-232 signals from the stolen port
output voltages. However, the pad will work just
fine with a single-ended 5-volt supply, like that
of the Stamp. See table 2 for connections.

Table 2. ORTEK Keypad Wiring

DB-9 Color PC Function Stamp

2 orange receive data serial in
3 yellow transmit data ground
6 white DSR handshake +5 volts
5 black ground ground

Armed with nothing more than the
information above, you could make use of the
ORTEK keypad for Stamp data entry. Figure 1
shows the hookup, while listing 1 demonstrates
how to make sense of the data. However,
I couldn’t leave well enough alone.

PC Keypad + PIC Program = “Stamp Pad”

The SERIN command can convert strings of
ASCII text like “123” into equivalent numbers
without the additional programming effort of
listing 1. If only the keypad generated terminal-
style output...

Instead of wishing, I picked up a soldering
iron and removed the keypad’s PIC controller. I
probed the remaining keypad circuitry and
determined the following:

• Like most keypads, this one is wired as a
matrix of row and column connections. When a
key is pressed, it shorts one row to one column.
The processor looks up the row and column
coordinates of the short in a table stored in
ROM to translate it to a key code.

• The pad’s column connections go to the four
bits of PIC port RA, which are configured as
inputs. (On the Stamp, RA is used to
communicate with the PC and manage the
EEPROM. It isn’t accessible to the user.) When
no key is pressed, all bits of RA are pulled high
(reading 1s) by four resistors.

• The pad addresses the row connections with

Stamp Applications no. 3, May 1995

3

the outputs of a 74HCT138 eight-channel
multiplexer. This chip accepts a three-bit
address from the lower bits of PIC port RB, and
outputs a low on one of its eight outputs.
Another bit of RB is used to activate and
deactivate the ‘138. Bit RB.7 serves as the serial
output. The remaining three bits of RB are
unused.

Based on these observations, I coded a
replacement PIC in assembly language. Thanks
to the clever design of the hardware, this was
extremely easy to do. Most of the effort went
into preparing tables that unscrambled the
row/column coordinate system of the pad, which
was apparently designed to permit an
inexpensive, one-sided circuit-board layout.

In addition to changing the data format with
my new program, I added a hardware feature; a
key-acknowledgment beeper. If an inexpensive
piezo beeper is connected between pin RB.4 of
the PIC and circuit ground, the beeper will
make a short “bink” sound to acknowledge each
key press. For applications that lack a display to
confirm the numbers being entered, this is a
tremendous help.

The modified keypad acts like a micro
terminal that transmits one ASCII character
per keypress (as shown in table 3). The
characters correspond to the Stamp’s internal
table of the ASCII character set. That is, the
following line of Stamp code will respond to the
code sent by pressing the “*” key:

IF theKey = “*” THEN Asterisk

My keypad PIC program has a strict debounce
function that requires keys to be pressed and
released in a deliberate manner. Speed isn’t
compromised, as long as users don’t roll from
one key to the other. The first key has to be
released before the next will register.

You can make your own Stamp Pad. Figure 2
shows details of the modification. To use the
modified pad, connect it to the Stamp as shown
in listing 1, then use Serin to collect the data. If,
for instance, you want a 16-bit number to be
stored to variable w1, use:

SERIN 0,N1200,#W1

Table 3. Key Codes for “Stamp Pad”

Key
Transmitted Text
(ASCII value)

1 1 (49)
2 2 (50)
3 3 (51)
4 4 (52)
5 5 (53)
6 6 (54)
7 7 (55)
8 8 (56)
9 9 (57)
Esc <ESC> (27)
/ / (47)
* * (42)
- - (45)
+ + (43)
. (point) . (46)
0 (zero) 0 (48)
Enter <RETURN> (13)
Num Lock <SPACE> (32)

The # symbol before the variable name tells
the Stamp to interpret up to five keystrokes as a
number ranging from 0 to 65,535 (the range of a
16-bit number). The user must press Enter or
any other non-numeric key to finish the entry. If
you just want to know which key was pressed,
use a byte variable without the #:

SERIN 0,N1200,B2

After the instruction executes, B2 will contain
the ASCII value of the key pressed, as shown in
table 3. If you have used SERIN before to accept
data from a PC or other computer, this stuff is
old hat by now.

You can obtain the Stamp Pad PIC from me,
either by buying it outright, or by obtaining the
source code free with purchase of my PIC Source
Book. This is a collection of assembly language
routines for the PIC that mimic the functions of
the BASIC Stamp, helping users to move their
programs into faster, more efficient PIC
hardware. See the source box at the end of this
column.

Stamp Applications no. 3, May 1995

4

Carefully desolder and remove the
original PIC from the board. Replace
with the custom “Stamp Pad” PIC,
using a socket if desired.

Install a piezo beeper (Radio Shack no.
273-074) for a “bink” response to each
keypress. Attach hookup wire close to the
body of the beeper, then trim excess lead
length. Glue the beeper in place.

Beeper – lead.

Beeper + lead.

Connect the beeper wires to
pin 10 of the PIC (+) and
circuit ground (–) as shown.

Figure 2. Details of the Stamp Pad modification.

But Wait, There’s More!

There’s an expression about sausage makers
using “every part of the pig except the squeal.”
In that spirit, I couldn’t ignore the software that
came with the keypad. It redirects codes from
the serial port to the keypad buffer, allowing
you to use numeric input from the pad in any
DOS or Windows application.

It occurred to me that if the Stamp were
programmed to mimic the key codes, and the
keypad software were installed, then the Stamp
could “type” data at the keyboard. Think about
it--Stamp-collected data magically appears in
your spreadsheet, database, or word processor
document. No fumbling with terminal software
or file transfers.

There are general-purpose software utilities
and hardware devices sold for this very purpose,
with prices from $100 to $500. They accept any
kind of serial input, not just numbers. But if
numbers are all you need, check out listing 2. To
use the program, install the keypad software
according to the instructions that come with the
pad. Temporarily disable the keypad driver by
typing “KEYPAD OFF” at the DOS prompt.
Connect a Stamp programmed with listing 2 as

shown in table 4, but don’t connect power to the
Stamp yet. Next, turn on the keypad driver by
typing “KEYPAD” at the DOS prompt.

Table 4. Stamp-to-PC Connections
for Listing 2

Pin DB9 DB25

pin 0 2 3
GND 5 7

You’re ready to go. For a test drive, boot the
BASIC Stamp host program STAMP.EXE, but
don’t load a program. Reconnect power to the
Stamp. A column of numbers will be typed onto
the screen. That’s the Stamp, communicating
with your keyboard buffer through the keypad
software. Now you can write data-acquisition
programs for the Stamp that can communicate
directly with any piece of PC software you own!

By the way, the reason for the somewhat
roundabout setup procedure above is to avoid
trashing your work. When I wrote the program
in listing 2, I already had the keypad driver
resident in my PC’s memory, and the Stamp
connected to the serial port. As soon as I ran the
program, it began typing into my just-finished
Stamp program listing. I had to quickly

Stamp Applications no. 3, May 1995

5

disconnect the Stamp, and erase all of the
numbers it had added to the listing.

Conclusion

If you’re interested in other keypad solutions
for the Stamp, make sure to get Parallax
application note no. 3, which shows how to
connect a 74C922 16-key pad and an LCD to the
Stamp. Looking for an interesting application
for our serial keypad? Try Parallax application
note no. 6, a stepper-motor driver that can be
controlled directly from the Stamp Pad.

Sources

The ORTEK keypad is available from Jameco
(part no. 114841) for $49.95, plus applicable
shipping and handling charges. To order or
request a catalog: Jameco Electronic Com-
ponents, 1355 Shoreway Drive, Belmont, CA
94002-4100; phone 1-800-831-4242 or 415-592-
8097.

The Stamp Pad PIC required to modify the
keypad is $10 postpaid from Scott Edwards
Electronics. Source code for the Stamp Pad PIC
is free with purchase of The PIC Source Book, a
cookbook of assembly language PIC routines
based on the instruction set of the BASIC
Stamp. Prototype your ideas with the Stamp,
then convert them into fast, professional, one-
chip solutions with the help of the cut-and-paste
routines from the Source Book. Price is $39
postpaid. Order from Scott Edwards Electronics,
964 Cactus Wren Lane, Sierra Vista, AZ 85635;
phone 520-459-4802; fax 520-459-0623. Use Visa
or Mastercard for phone/fax orders; checks,
money orders, or POs from approved insti-
tutions also accepted. CODs and foreign orders
incur additional charges.

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101.

Stamp Applications no. 3, May 1995

6

' Listing 1: OR_KEYS.BAS (interpret ORTEK MCK-18S/N keypad codes)
' This program accepts serial data from the ORTEK MCK-18S/N numeric
' keypad and converts it into a 16-bit value in variable w1. Users
' must be careful not to hold keys down, or they will activate the
' pad's autorepeat function, causing entry errors.

' Main program loop.
Loop:
gosub GetKeys ' Getkeys does all the work.
debug w1 ' Show the result on the PC screen.
goto Loop ' Do it forever.

' Subroutine to receive the serial data, filter out extraneous key-up
' codes, and convert received data bytes to a 16-bit value. GetKeys
' will keep accepting and interpreting digits until the user presses
' a non-numeric key, like <Enter>. The routine takes advantage of the
' fact that the key codes for the numbers 1-9 are sequential;
' subtracting 95 from them leaves you with the number itself.
' Although0 (zero) is out of sequence, an additional IF/THEN
' statement recognizes its code ("o").
GetKeys:
let w1 = 0 ' Clear w1 to start.
Again:
 Serin 0,N1200,b0 ' Get code from the keypad.
 if bit5 = 0 then Again ' Bit5 is 0 in key-up codes; ignore em.
 if b0 <> "o" then skip ' Change 0 code from "o" (111) to 95.
 let b0 = 95
skip:
 if b0 > 104 then done ' Non-numeric key pressed; we're done.
 let b0 = b0 - 95 ' Otherwise convert to 0-9, multiply
 let w1 = w1 * 10 + b0 ' old total by 10, add new value, and
goto Again ' get the next digit.
done:
 return ' Done: return to main program.

Stamp Applications no. 3, May 1995

7

' Listing 2: FAKE_PAD.BAS (imitate the ORTEK keypad codes)
' This program mimics the codes produced by the ORTEK keypad,
' allowing a PC running the ORTEK software to receive Stamp data
' to its keyboard buffer. The Stamp "types" directly into programs
' that are incapable of normal serial input. To demonstrate this
' capability, the Stamp will count upward by 1 and type the result
' of each calculation to the PC. Remember that the keypad software
' must be installed on the PC for this to work. Before running
' this program, make sure that this program is saved, since the
' Stamp may begin typing numbers into it, if the keypad software
' is active.

SYMBOL nonZero = bit0 ' Leading-zero suppression flag.
SYMBOL code = b1 ' Key code to send.
SYMBOL decade = w2 ' Power-of-10 divisor for conversion.
SYMBOL count = w3 ' Counter for demo.

' Main program loop.
Loop:
 let w1 = count ' Transfer value of copy to w1.
 gosub typeData ' "Type" the data to PC.
 pause 100 ' Wait briefly
 let count = count + 1 ' Increment counter.
goto Loop ' Do it forever.

' Subroutine to convert the value stored in w1 to ORTEK keypad codes.
typeData:
let nonZero = 0 ' Clear flag that indicates first non-0 digit.
let decade = 10000 ' Start with highest digit of w1.
nextDigit:
 let code = w1/decade ' Get value of current digit.
 let w1 = w1//decade ' Leave remainder in w1.
 if code=0 AND nonZero=0 AND decade <> 1 then skip3 ' No leading 0s.
 if code=0 then skip1
 let nonZero = 1
 goto skip2
skip1:
 let code = 16 ' Code for 0, minus 95.
skip2:
 let code = code + 95
 serout 0,N1200,(code) ' Send key-down code of digit.
 let bit13 = 0 ' Clear bit5 of b1 (bit13) for key-up code.
 serout 0,N1200,(code) ' Send key-up code.
skip3:
 let decade = decade/10 ' Get ready for next lower digit
 if decade > 0 then nextDigit
 serout 0,N1200,("tT") ' Done. Send <Enter> key.
return

