Spread Spectrum Rule Recommendations

Phil Karn, KA9Q

What Is Spread Spectrum?

- ANY communication system that uses much more RF bandwidth than baseband bandwidth
- Not really limited to "traditional" SS systems, e.g., direct sequence, frequency hopping, etc
- Includes "narrowband FEC" systems
- Arguably applies to ordinary analog FM!

Why Use Spread Spectrum?

- For the same reasons we use FM! And more
- Interference and noise rejection ("capture effect"). 10dB for FM; digital SS systems have negative capture ratios (e.g., -15 dB)
- Simplifies spectrum management
- Highly effective against multipath fading
- Can dramatically *increase* capacity of spectrum in a frequency reuse environment

Traditional Spectrum Management

- Bandwidth is precious minimize its use
- Carve up the spectrum into channels and fight over them
- Give lip service to transmitter power control

Why The Tradition Is Wrong

- Goes against well-established theory
 (Shannon, 1948)
- Users' demands are seldom constant trunking inefficiencies and (re)allocation overheads are enormous
- In a frequency reuse situation (i.e., almost all of amateur radio), interference is a fact of life
- Increasing interference resistance inherently requires extra bandwidth
- Interference resistance wins out over extra bandwidth

These Ideas Are Not New!

- Shannon published theory in 1948
- John Costas (K2EN) published Poisson, Shannon, and the Radio Amateur in 1959: "The results ... challenge the intuitively obvious and universally accepted thesis that congestion in the RF spectrum can only be relieved by the use of progressively smaller transmission bandwidths..."
- What's new is the digital technology now available to us

Why Should We Encourage Amateur Spread Spectrum?

- Because it exists, and we're hams
- Because the rest of the world is rapidly embracing it (GPS, cellular phones, Part 15.247)
- Because shared, congested amateur bands are a fact of life, and we should encourage spectral efficiency

Can't Nearby SS Stations Blanket a Whole Band?

- Yes! But the same is true in practice for narrowband stations - ever tried to share 20m with the KW station next door?
- Efficient, power-controlled spread spectrum is actually a pretty benign neighbor

Can't a Whole Bunch of SS Stations Raise The Noise Floor?

- Yes! But a whole bunch of narrowband stations can occupy every channel, which is even worse
- Our licenses do not guarantee us access to the spectrum at all times - it's a dynamically shared resource, and sometimes the demand exceeds supply
- Spread Spectrum represents a way to increase spectral efficiency and thereby reduce the chance that demand will exceed supply

How Do We Promote Efficiency?

- Encourage spread spectrum!
- Minimize *power*, not bandwidth
- CDMA cellular shows minimizing power is the key to maximizing spectral efficiency
- I.e., we should require automatic power control in amateur SS systems as a condition of relaxed bandwidth limits
- Repeaters and directional antennas also minimize power
- Other benefits: reducing RFI, biohazards, battery drain, etc

Spread Spectrum Power

 By themselves, frequency hopping and direct sequence are "power neutral". Over a nonfading, white-noise channel, they use the same total power as a narrowband signal:

Spectral density (W/Hz) x Bandwidth = Total power Same for both cases (equal areas)

-SS on fading channels needs less fade margin

Forward Error Correction

 By adding FEC we can actually *reduce* the total power (E_b/N₀) to send at a given rate!

nonspread

spread

area of spread signal now less than nonspread signal

-Think of "spectral density" as "QRM potential"

We now win twice from a QRM perspective: first, because power is spread out thinly, second, because there is less total power

What is E_b/N₀?

- The ratio of the received energy per bit, in watt-sec or joules, to the noise spectral density, in watts per hertz
- Equal to the S/N (signal-to-noise) ratio only when the bandwidth is equal to the data rate
 - S/N ratio depends on bandwidth and data rate
 - E_b/N_0 is independent of bandwidth and data rate
- The required E_b/N₀ is a modem's fundamental figure of merit the lower the better
- Inversely proportional to capacity in a spread spectrum environment

Power Reduction with FEC

- Forward Error Correction (FEC) coding, a basic part of all modern SS systems, actually reduces the power required to send at a given rate
- Gains of 7-10 dB are possible on nonfading channels, as much as tens of dB on fading channels and against interference
- FEC inherently requires extra bandwidth, making it "SS-like" without actually spreading

Example: UHF Mobile

- Qualcomm CDMA (IS-95) digital cellular uses Direct Sequence Spread Spectrum on both forward and reverse links. 1.25 MHz BW
- The forward link uses BPSK data modulation with rate 1/2 FEC. Loose power control
- The reverse link uses 64-ary orthogonal data modulation with rate 1/3 FEC. Tight power control (+/- 1dB)
- Typical reverse link E_b/N₀: 5 dB in fading
- Typical mobile transmit power: 1-3mW!

Example: HF

- HF simulator tests of Clover II vs STANAG 4285 (NATO standard military modem) by KE4BAD (QEX, Dec 1994)
- Clover uses a 500 Hz bandwidth; STANAG 4285 uses 3KHz
- Both are reasonably efficient systems within their bandwidth constraints; both significantly outperform uncoded FSK
- Clover requires at least 10 dB more E_b/N₀ than STANAG 4285 for the same error rate

Recommended Rule Changes

- Delete existing SS rules (97.311)
- Waive existing 97.307 bandwidth limits for stations that use less than 100W and:
 - Use less than 1W, or
 - Automatically limit received E_b/N₀ at the intended receiver(s) to 20 dB
- Maximize flexibility do not require any particular form of modulation, coding, etc, or mandate a minimum processing gain
- Resolve interference disputes in favor of the lower-powered station, regardless of mode