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How does a Smith chart work?
A venerable calculation aid retains its allure in a world of lightning-fast computers and graphical user 
interfaces.

By Rick Nelson, Senior Technical Editor

The Smith chart appeared in 1939 (Ref. 1) as a graph-based method of simplifying the complex math (that is, 
calculations involving variables of the form x + jy) needed to describe the characteristics of microwave 
components. Although calculators and computers can now make short work of the problems the Smith chart 
was designed to solve, the Smith chart, like other graphical calculation aids (Ref. 2), remains a valuable tool. 

Figure 1. RF electronic-design-automation programs use Smith 
charts to display the results of operations such as S-parameter 
simulation. Courtesy of Agilent Technologies.

Smith chart inventor Philip H. Smith 
explained in Ref. 1, “From the time I 
could operate a slide rule, I’ve been 
interested in graphical representations 
of mathematical relationships.” It’s the 
insights you can derive from the Smith 
chart’s graphical representations that 
keep the chart relevant for today’s 
instrumentation and design-
automation applications. On 
instruments (Ref. 3), Smith chart 
displays can provide an easy-to-
decipher picture of the effect of 
tweaking the settings in a microwave 
network; in an EDA program (Figure 
1), a Smith chart display can 
graphically show the effect of altering 
component values.

Although the Smith chart can look 
imposing, it’s nothing more than a 
special type of 2-D graph, much as 
polar and semilog and log-log scales 
constitute special types of 2-D graphs. 
In essence, the Smith chart is a 
special plot of the complex S-
parameter s11 (Ref. 4), which is 
equivalent to the complex reflection 
coefficient G for single-port microwave 
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components.

Note that in general,

and that | G |ejθ is often expressed as G/u. Note that this latter format omits the absolute-value bars around 
magnitude G; in complex-notation formats that include the angle sign (/), the preceding variable or constant is 
assumed to represent magnitude. Figure 2 shows the specific case of a complex G value 0.6 + j0.3 plotted in 
rectangular as well as polar coordinates (0.67/26.6°).

Figure 2. The Smith chart resides in the complex plane 
of reflection coefficient G = Gr + Gi = | G |ejθ = | G |/u. At 
point A, G = 0.6 + j0.3 = 0.67/26.6°.

Why the circles?

That’s all well and good, you may say, but 
where do the Smith chart’s familiar circles 
(shown in gold in Figure 1) come from? The 
outer circle (corresponding to the dashed circle 
in Figure 2) is easy—it corresponds to a 
reflection coefficient of magnitude 1. Because 
reflection-coefficient magnitudes must be 1 or 
less (you can’t get more reflected energy than 
the incident energy you apply), regions outside 
this circle have no significance for the physical 
systems the Smith chart is designed to 
represent.

It’s the other circles (the gold nonconcentric 
circles and circle segments in Figure 1) that give 
the Smith chart its particular value in solving 
problems and displaying results. As noted 
above, a graph such as Figure 2’s provides for 
convenient plotting of complex reflection 
coefficients, but such plots aren’t particularly 
useful by themselves. Typically, you’ll want to 
relate reflection coefficients to complex source, 
line, and load impedances. To that end, the 
Smith chart transforms the rectangular grid of 
the complex impedance plane into a pattern of 
circles that can directly overlay the complex 
reflection coefficient plane of Figure 2.

Ref. 5 provides a Quicktime movie of a 
rectangular graph of the complex-impedance 
plane morphing into the polar plot of the typical 
Smith chart. The following section shows the 
mathematical derivation that underlies the Smith 
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Figure 3. Points of constant resistance form circles on 
the complex reflection-coefficient plane. Shown here are 
the circles for various values of load resistance.

chart. In effect, the Smith chart performs the 
algebra embodied in equations 2 through 16.

The algebra

Recall that nonzero reflection coefficients arise 
when a propagating wave encounters an 
impedance mismatch—for example, when a 
transmission line having a characteristic 
impedance Z0 = R0 + jX0 is terminated with a 
load impedance ZL = RL + jXL Þ Z0. In that 
case, the reflection coefficient is

 

In Smith charts, load impedance is often expressed in the dimensionless normalized form zL = rL + xL =ZL/Z0, 
so Equation 2 becomes

Equation 3 is amenable to additional manipulation to obtain zL in terms of G:
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Explicitly stating the real and imaginary parts of the complex variables in Equation 4 yields this equation:

which can be rearranged to clearly illustrate its real and imaginary components. The first step is to multiply 
the numerator and denominator of the right-hand side of Equation 5 by the complex conjugate of its 
denominator,

thereby enabling a form in which real and imaginary parts are readily identifiable and separate:

http://www.web-ee.com/primers/files/SmithCharts/smith_charts.htm (4 of 12) [11/8/2005 5:37:45 PM]



http://www.web-ee.com/primers/files/SmithCharts/smith_charts.htm

The real part is then

and the imaginary part is

You can further manipulate equations 8 and 9 in the hope of getting them into a form that might suggest a 
meaningful graphical interpretation. Equation 8, for example, can be altered as follows:

The last line of Equation 10 might look familiar. It’s suggestive of this equation you might remember from high 
school analytic geometry:
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Equation 11 represents a circle plotted in an x-y plane with radius r and centered at x = a, y = b. In Equation 
10, you can add rL2/(rL + 1)2 to each side to convert the G r terms into a polynomial that you can factor:

You can then arrange Equation 12 into the form of a circle centered at [rL/(rL + 1), 0] and having a radius of 
1/(rL + 1):

Figure 3 shows the circles for several values of rL. Note that the rL = 0 circle corresponds to the | G | = 1 
circle of Figure 2. You can similarly rearrange Equation 9:
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adding a constant to make the G i terms part of a factorable polynomial:

Equation 15 can then be written as follows:

representing a circle of radius 1/xL centered at [1, 1/xL]. Figure 4 shows several of these circles or circle 
segments for various values of xL. The segments lying in the top half of the complex-impedance plane 
represent inductive reactances; those lying in the bottom half represent capacitive reactances.

Note that the circle centers all lie on the blue G r = 1 vertical line. Only the circles segments that lie within the 
green | G | =1 circle are relevant for the Smith chart. Note that xL = 0 along the horizontal axis, which 
represents a circle of infinite radius centered at [1, +y] or [1, –y] in the complex G plane.

You can superimpose the circles of Figure 3 and the segments lying within the | G | = 1 circle of Figure 4 to 
get the familiar Smith chart (Figure 5). Note that the Smith chart circles aren’t a replacement for the complex 
reflection-coefficient plane—in fact, they exist on the plane, which is represented in rectangular form by the 
gray grid in Figure 5.

Now what?
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Figure 4. Values of constant imaginary load impedances xL make 
up circles centered at points along the blue vertical line. The 
segments lying in the top half of the complex-impedance plane 
represent inductive reactances; those lying in the bottom half 
represent capacitive reactances. Only the circle segments within 
the green circle have meaning for the Smith chart.

The coexistence of complex-
impedance and complex-reflection-
coefficient information on a single 
graph allows you to easily determine 
how values of one affect the other. 
Typically, you might want to know 
what complex reflection coefficient 
would result from connecting a 
particular load impedance to a system 
having a given characteristic 
impedance.

Consider, for example, the normalized 
load impedance 1 + j2. You can locate 
the point representing that value on 
the Smith chart at the intersection of 
the rL = 1 constant-resistance circle 
and the xL = 2 constant-reactance 
circle segment; the intersection is point 
A in Figure 6. With point A plotted, 
you can directly read the resulting 
reflection coefficient: G = 0.5 + j0.5, or 
G = 0.707/45°.

To graphically determine the polar 
form, simply divide the length of line 
segment OA by the radius of the rL = 0 
circle. You can use a protractor to 
measure the angle; many Smith 
charts, such as one included in Adobe 
PDF format on a CD-ROM supplied 
with Ref. 6, include a protractor scale 
around the circumference of the rL = 0 
circle. Such a scale is suggested in 
yellow in Figure 6.

As another example, the complex-
impedance value 1 – j1 is located at 
point B in Figure 6; at point B, you can 
read off the corresponding reflection 
coefficient G = 0.2 – j0.4, or G = 
0.45/–63°. (Keep in mind here that this 
example describes dimensionless 
normalized impedances. For a system 
characteristic impedance of 50 V, the 
respective values of load impedances 
at points A and B would be 50 + j100 
V and 10 – j20 V.)
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Figure 5. The circles (green) of Figure 3 and the segments (red) 
of Figure 4 lying within the | G | = 1 circle combine to form the 
Smith chart, which lies within the complex reflection-coefficient 
(G) plane, shown in rectangular form by the gray grid.

Standing wave ratio

Smith charts can help you determine 
input impedances as well as relate 
load impedances to the reflection 
coefficient. To understand how that 
works, first review the operation of 
standing waves in a transmission line 
with a mismatched load. Such waves 
take on a sinusoidal form such as that 
shown in Figure 7a. In Figure 7, 
standing waves result when a voltage 
generator of output voltage VG = (1 
V)sin(vt) and source impedance ZG 
drive a load impedance ZL through a 
transmission line having characteristic 
impedance Z0, where ZG = Z0 Þ ZL 
and where angular frequency v 
corresponds to wavelength l (Figure 
7b). The values shown in Figure 7a 
result from a reflection coefficient of 
0.5.

I won’t derive the equation that 
describes the standing wave that 
appears along the transmission line in 
Figure 7b; for a derivation, see Ref. 5 
or another text covering transmission-
line theory. I’m asking you to accept 
that if you could connect an 
oscilloscope to various points along 
the transmission line, you would obtain 
readings illustrated in Figure 7c.

Here, probe A is located at a point at 
which peak voltage magnitude is 
greatest—the peak equals the 1-V 
peak of the generator output, or 
incident voltage, plus the in-phase 
peak reflected voltage of 0.5 V, so on 
your oscilloscope you would see a 
time-varying sine wave of 1.5-V peak 
amplitude (the gray trace in Figure 7c). 
At point C, however, which is located 
one-quarter of a wavelength (l/4) 
closer to the load, the reflected voltage 
is 180° out of phase with the incident 
voltage and subtracts from the incident 
voltage, so peak magnitude is the 1-V 
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Figure 6. With a Smith chart, you can plot impedance values 
using the red and green circles and circle segments and then 
read reflection-coefficient values from the gray grid. Many Smith 
charts include a scale (yellow) around their circumference that 
lets you read angle of reflection coefficient.

Figure 7. (a) Standing waves, which repeat for every half 
wavelength of the source voltage, arise when (b) a matched 
generator and transmission line drive an unmatched load. (c) 
Time-varying sine waves of different peak magnitudes appear at 
different distances along the transmission line as a function of 
wavelength.

incident voltage minus the 0.5-V 
reflected voltage, or 0.5 V, and you 
would see the red trace. At 
intermediate points, you’ll see peak 
values between 0.5 and 1.5 V; at B 
(offset l/8 from the first peak) in Figure 
7c, for example, you’ll find a peak 
magnitude of 1 V. Note that the 
standing wave repeats every half 
wavelength (l/2) along the 
transmission line.

The ratio of the maximum to minimum 
values of peak voltage amplitude 
measured along a standing wave is 
the standing wave ratio SWR. For the 
Figure 7 system, SWR = 1.5/0.5 = 3. 
Note that

I’m not proving Equation 17 here, but 
substituting the 0.5 reflection 
coefficient used in the Figure 7 
example into Equation 17 does 
provide the desired result of 3.

The relationship between G and SWR 
suggests that SWR might have a place 
within the Smith chart, and indeed it 
does. In fact, calculations involving 
SWR first prompted Smith to invent his 
chart. “By taking advantage of the 
repetitive nature of the impedance 
variation along a transmission line and 
its relation to the standing-wave 
amplitude ratio and wave position, I 
devised a rectangular impedance chart 
in which standing-wave ratios were 
represented by circles,” he explained 
in Ref. 1.

Figure 8 helps to explain how those circles arise. In Figure 8, point L represents a normalized load 
impedance zL = 2.5 – j1 = 0.5/18° (I chose that particular angle primarily to avoid the need for you to 
interpolate between resistance and reactance circles to verify the results). The relationship of reflection 
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Figure 8. Constant SWR circles are centered at the origin of the 
complex reflection-coefficient plane. The yellow scale represents 
per-unit wavelength movements away from the load toward a 
generator along a transmission line.

coefficient and SWR depends only on 
the reflection coefficient magnitude 
and not on its phase. If point L 
corresponds to | G | = 0.5 and SWR = 
3, then any point in the complex 
reflection-coefficient plane equidistant 
from the origin must also correspond 
to | G | = 0.5 and SWR = 3, and a 
circle centered at the origin and whose 
radius is the length of line segment OL 
represents a locus of constant-SWR 
points. (Note that the SWR = 3 circle 
in Figure 8 shares a tangent line with 
the rL = 3 circle at the real axis; this 
relationship between SWR and rL 
circles holds for all values of SWR.)

Using the standing-wave circle, you 
can determine input impedances 
looking into any portion of a 
transmission line such as Figure 7’s if 
you know the load impedance. Figure 
7, for instance, shows an input 
impedance Zin to be measured at a 
distance l0 from the load (toward the 
generator). Assume that the load 
impedance is as given by point L in 
Figure 8. Then, assume that l0 is 0.139 
wavelengths. (Again, I chose this 
value to avoid interpolation.) One trip 
around the Smith chart is equivalent to traversing one-half wavelength along a standing wave, and Smith 
charts often include 0- to 0.5-wavelength scales around their circumferences (usually lying outside the 
reflection-coefficient angle scale previously discussed).

Such a scale is show in yellow in Figure 8, where clockwise movement corresponds to movement away from 
the load and toward the generator (some charts also include a counter-clockwise scale for movement toward 
the load).

Using that scale, you can rotate the red vector intersecting point L clockwise for 0.139 wavelengths, ending 
up at the blue vector. That vector intersects the SWR = 3 circle at point I, at which you can read Figure 7’s 
input impedance Zin. Point I lies at the intersection of the 0.45 resistance circle and –0.5 reactance circle, so 
Zin = 0.45 – j0.5.

Still going strong

The Smith chart remains an invaluable aid for a variety of applications, from the design of impedance-
matching networks to the determination of the feed-point impedance of an antenna based on a measurement 
taken at the input of a random length of transmission line (Ref. 7). Whether you are using it as a 
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computational tool—as its inventor intended—or as the graphical interface to instrumentation or EDA 
software, it provides insights to circuit operation not available from the raw data that number crunching 
machines can produce from microwave component measurements and simulations. T&MW
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