
An Introduction to Linear 
Recursive Sequences in Spread 
Spectrum Systems 
 
By: Richard Schwarz   Filtronic Sigtek Inc. 
Revised December 2001 
 
Spread Spectrum technology is being applied to many areas of modern communications 
such as Wireless Lans, Cellular Telephones, Global Positioning System (GPS), and  Very 
Small Aperture Satellite Terminals (VSAT) just to name a few. The core concept behind 
this technology involves spreading the data to be transmitted over a much broader 
spectrum than what is conventionally done. The spreading is usually achieved by 
modulating the data with a pseudo random  linear recursive sequence (LRS) at a much 
higher frequency.  When you demodulate the composite of the spreading sequence and 
data with a locally generated, identical, and phase aligned spreading sequence the power 
from the composite bandwidth is collapsed into the data bandwidth. This process yields 
an effective gain called processing gain. The measure of processing gain is given as the 
ratio of the data rate to the spreading code rate. Multiple spread users can coexist in the 
same bandwidth if each user is assigned a different spreading code. Systems utilizing this 
technique are called Code Division Multiple Access (CDMA) systems. This article 
focuses on the properties of Linear Recursive Sequence spreading codes and their uses in 
Spread Spectrum Systems. The article discusses modern Spread Spectrum systems like 3G 
W-CDMA. The article also has a section on modern uses of the PN sequences in 
commercial environments. A VHDL example is also given for implementing a PN 
generator on an FPGA board. 
 
LINEAR RECURSIVE SEQUENCE FUNDAMENTALS 
 
A Linear Recursive Sequence (LRS) otherwise known as a Pseudo Noise (PN) sequence 
is generated from systems which contain three basic elements. These elements are: 
 
         1) Delay Elements 
         2) Linear Combining Elements 
         3) Feedback Loop Element 
 
The Delay elements are connected in series. Some of the outputs of the Delay elements 
are combined in Linear Combining Elements with the outputs of other Delay elements 
and fed back to the input of the first Delay element in the series. This definition can 
sound intimidating to those of us new to Linear Sequences and Spread Spectrum 
technology, so let's try to clarify it. 
 
A LRS generator is usually made up of shift registers (the Delay Elements from our 
definition above)  connected in series. Figure 1  shows just such a configuration. 



 
Figure 1 Shift Register Configuration 

 
Each register has an input (labeled D) and output (labeled Q) and a clock input (triangle). 
Each successive register's input is connected to the previous registers output and all the 
register's clock inputs are connected to a single clock source so that when a clock pulse is 
sent,  the contents of each register is shifted into the next register. As you can see in 
Figure 1  there is a switch on the input of the first shift register which allows us to set a 1 
(high level) or 0 (low level) and a push button switch which is used as our clock. In this 
example we switch the 1/0 switch to the desired setting for the first register and then 
press the clock button which sends a clock to all registers and sets the 1 or 0 set on the 
1/0 switch into the first register and sets the contents of the remaining registers to the 
value contained on the output of the previous register's Q line. The process is repeated in 
our example four times until all four registers are filled with the desired fill. Figure.2 
displays the process described above. 
 



 
Figure 2 Shift Register behavior during  four clock pulses 

 
In our definition of an LRS we talked about three basic elements of which our example 
above contains only one, the Delay elements. We will now add the feedback element 
which consists of feeding the output of the last register to the input of the first register. 
Since we have already placed in the desired initial fill contents of the registers we will 
disconnect the 1/0 switch circuitry. What we now have as seen in Figure 3 is a sequence 
generator which will generate the initial fill sequence pattern (1100) and will continue to 
generate this same pattern over and over for as many pushes on the clock button as are 
made. In this configuration our sequence repeat length is considered to be the same as the 
number of registers we are using (in our example 4).                               
         



 
                         Figure 3 Shift Register with Feedback Path 
 
By adding our third element (the Linear Combiner) we can generate a much longer repeat 
length using the same number of Delay elements (shift registers). An Exclusive OR 
(XOR) gate is used as the Linear Combining element whose two inputs are  the feedback 
of the generator and the output of one of the other registers. The output of the Exclusive 
OR gate becomes the input to the generator. Other TAPS can be added and combined in 
additional XOR gates if desired but for this example we will only use one. Figure.4 
shows this new configuration example with the same initial fill we used before. Notice 
that our sequence repeat length is now 15 as opposed to only 4 from our previous 
example. As a matter of fact this is the longest sequence that a four register configuration 
can generate and is equal to 2n-1 where n = the number of registers used. This 
configuration can generate sequences with repeat lengths less than 24-1=15 if configured 
with different TAPS off of outputs of different registers. A configuration which generates 
a sequence whose repeat length is 2n-1 and whose register fills contained  all possible fill 
values except the all zero fill after 2n -1 clocks and in a particular order is called a 
Maximal Length configuration. We will discuss Maximal sequences in more detail later. 
 



 
                   Figure 4 R4 Maximal Length LRS Generator 
 
 
In our previous example we used a configuration called Out-of-Line  Linear 
Combination. This is where the Linear combiner (XOR gate) outputs are in the feedback 
path. This is the most common configuration and is often called a SIMPLE-TYPE (S-
TYPE) configuration. The alternate configuration is called In-Line Linear Combination or 
MODULAR-TYPE (M-TYPE) generator. In this configuration the Linear combiners (XOR 
gates)  are in the shift register path. An example of an S-TYPE generator and its 
equivalent M-TYPE generator are displayed in Figure6. Notice that the Exclusive OR 
gates are represented with addition symbols inside of circles. This is to represent the fact 
that Exclusive OR gates are actually Modulo-2 adders. The truth table for the Modulo-2 
Adder is shown below. 
 
    1 + 0 = 1  0 + 0 = 0 
    0 + 1 = 1  1 + 1 = 0 
      
            Figure  5 Modulo-2 Truth Table 
 
 
 
    



 
Figure 6 

Equivalent In-Line and Out-of-Line R4 LRS Generator Configurations 
 
The M-TYPE (In-Line) configuration has some advantages in hardware implementation 
and is often used to implement the hardware while the S-TYPE is more straight forward 
for calculation and analysis and is generally more accepted.  
 
LINEAR RECURSIVE SEQUENCE GENERATION PARAMETERS 
 
In our examples we will continue to use a four register generator for simplicities sake. It 
should be noted however that most applications use more registers to achieve longer 
sequences. Different sequences can be generated by modifying various characteristics of 
an LRS generator. Three common characteristics which can be modified are the TAP 
placements, the sequence LENGTH, and the original register FILL contents. 
 
TAPS 
 
As can be seen from Figure 6 LRS Generators have different positions which the non-
feedback inputs of the Exclusive OR gates are tapped from. These TAP points are very 
significant and are the first LRS parameter we will discuss. Let us  number our registers 
from 1 to n where n equals the number of registers (so 1 to 4 in our example) and have 
register #1's output be our least significant TAP position and the output of our nth register 
be our most significant TAP position. 
 
 

  



 
Figure 7 TAP Positions 

 
 
 Further let us represent these positions as a Hexadecimal number. We can then say that 
we have 2n-1 possible tap settings (ie. 23 = 8)  since we will always have the Most 
significant tap which is our feedback path and our least significant TAP where the 
feedback is input. Figure.8 shows all the possible TAP settings for our example four 
register (R4) generator. As can be seen from both figures 7 and 8, these TAP settings can 
also be represented as polynomials where each successive tap (starting from the left) is 
represented by x raised to its associated TAP position (ie. TAP position 3 = x3 . The zero 
TAP is not shown in the Hexadecimal representations but is shown as x0 = 1 in the 
polynomial representations. 

 
Bit1 Bit2 Bit3 Bit4 HEX Natural 

Length 
Polynomial Representation 

0 0 0 1 8h 4 X4 +1 
0 0 1 1 Ch *15 x4 + x3 +1 
0 1 0 1 Ah 6 x4 + x2 + 1 
0 1 1 1 Eh 0 x4 + x3 + x2 +1 
1 0 0 1 9 h *15 x4 + x3 + x + 1 
1 0 1 1 D h 0 x4 + x3 + x + 1 
1 1 0 1 B h 0 x4 + x2 + x + 1 
1 1 1 1 F h 5 x4 + x3 + x2 + x + 1 

 
 Figure 8 R4 Tap Settings 

 
There are several aspects of Figure 8 that are worth examination. First of all notice that 
the C h and 9 h TAP settings are equal to 2n-1 length and are Maximal length codes. Also 
notice that except for the Most Significant Tap (the feedback tap) that 9 h (1001) and C h 
(0011) are mirror images of each other. That's because for every Maximal length TAP 
setting there is another Maximal Tap setting that is it's mirror image. Also notice the 0 
repeat length TAP settings and notice that each of them has an odd number of TAPs (in 



the Hexadecimal Representation). An XOR gate with an odd number of inputs and the all 
ones fill would produce a one as the feedback input and never recover from the ones fill. 
For the same reason an all zeros fill will always produce a zero feedback input and never 
recover from being all zeros. The zero fill problem applies to odd and even number of 
TAPs and so is a universal rule. So a rule for our LRS Generator is that all TAP settings 
should contain an even number of TAPs. There are several other TAP settings in Figure 8 
which have a repeat length less than 2n-1. Maximal length codes have other properties 
besides their length which make them highly desirable which we will examine later.   
 
LENGTH 
 
The length parameter of an LRS Generator is not as straight forward as one might think. 
The lengths mentioned in Figure 8 are the  natural lengths  of the LRS Generator given 
its particular TAP setting. This is the length which the shift register will run before 
naturally loading it's Initial Fill. Sometimes LRS generators are truncated before 
reaching their Maximal Length, or are allowed to run several Chips (clock cycles) past its 
natural length (appended) and are then reloaded with the Initial Fill. Some possible 
architectures which allow appending or truncating of the Natural length are described 
below. In Figure 9 a parallel set of registers hold the initial fill and automatically loads 
this fill in when a clock counter reaches the length set in the counter.  
          

 
             
    
                                        Figure  9 LRS Generator with Length Counter 
 
In another possible architecture the sequence is stored in a RAM chip whose starting 
address is reset after a predetermined length. Details must be known about the particular 
LRS generator's architecture before assuming what the length setting means.  
 
FILL 
 
The FILL parameter is the simplest of the three parameters and describes the initial 
contents of all n registers of an Rn (ie. R4) LRS generator (or the register contents at code 
phase offset 0). In our example we used a fill of 0011. It is more common to set an 
impulse (one in least significant bit of FILL and 0 in all the rest) or an all ones FILL. The 
all ones FILL is particularly useful as it is easy to spot in the sequence when observing it 
on an oscilloscope, printout or screen. The all zeros FILL is not valid as it will never 
recover from this FILL due to the use of XOR gates which use the  MODULA-2 addition 
rule which says that 0 + 0 = 0.  
 



 MAXIMAL LENGTH CODES 
 
As was  mentioned earlier Maximal Length codes are codes whose natural length runs to 
2n-1 elements, where n equals the number of registers used to generate the sequence. 
Maximal Length codes have four basic properties which are listed below. 
 
1) Two Level Autocorrelation - The autocorrelation of a maximal length sequence 
consists of two levels. Level one which occurs every 2n-1 elements has a correlation of 
2n-1. In other words all the patterns match. More will be said about correlation later but 
for now it is important to realize that if I had two identical Maximal sequences and I slid 
one sequence by the other sequence one pattern at a time I would get a 100% 
correlation(match) in the number of chips every time the sequences are exactly time 
aligned, and about half the chips will match otherwise. This makes Maximal Sequences 
easier to phase lock than non-Maximal sequences which exhibit partial correlation levels 
when the sequences being correlated and are not time aligned    
  
 
2) All possible n-bit numbers-A maximal length code will generate all possible n bit 
numbers in the coarse of cycling through its frame length with the exception of zero. 
Inside the frame of a maximal length code there are: 
         
    2n-(p+2)runs of length p ones  
    2n-(p+2)runs of length p zeros 
  Except there are only: 
    0 runs of zeros of length n. 
    1 run of ones of length n. 
    1 run of zeros of length n-1 
    0 runs of ones of length n-1. 
   Where n = number of registers  and p = run length 
 
3) Product of identical Maximals with phase offset yields same Maximal with phase 
offset- When Modula-2 adding (XORing) a maximal length code with a phase offset 
copy of the same maximal length code you get yet another phase offset copy of the same 
code as the Product. 
 
4) A Maximal Length code  contains one more one than zero in its 2n-1 elements. This 
is because an all zero FILL is invalid, and is a FILL which the generator cannot recover 
from. An all zero portion of the code could be added to RAM generated code however if 
desired. 
 
The usefulness of these Maximal Codes stem from these four properties mentioned 
above. In particular the two level Auto-Correlation allows Spread Spectrum receivers to 
more easily detect code lock of an incoming signal with an LRS code impressed upon it.  
A basic block diagram of a Direct Sequence Spread Spectrum system is provided in 
Figure 10 .  
 
  



 
 
         Figure 10 Direct Sequence Spread Spectrum System Block Diagram 
 
In this example narrow band information is mixed with a wideband LRS at the 
transmitter and then upconverted to an Intermediate Frequency (IF) and then a Radio 
Frequency (RF). At the receiver the RF carrier is down converted and then the IF carrier 
is stripped off. Then the LRS must be removed in order to extract the transmitted 
information. This is not a trivial task. First the LRS of the incoming signal must be 
aligned with a locally generated LRS with identical settings (TAPS, LENGTH, FILL, 
Clock Rate, etc.). Then the local LRS must be phase aligned with the incoming signal. 
Here's where Maximal codes come in handy. The receiver can slide the local code by the 
incoming code (usually by dropping clock cycles) and watch the number of bits in the 
sequence which match until the two sequences match and a strong correlation (match) 
peak occurs, at which point the receiver stops sliding the local LRS and is presumably 
time aligned with the incoming LRS. Then the locally generated code is mixed with the 
composite incoming signal which strips off the LRS from the incoming signal to produce 
the transmitted information. Non-Maximal codes produce partial correlations which make 
it more difficult for the receiver to detect an accurate code phase lock. 
  
The mixing of the data with the spreading code at a much higher bandwidth than the data 
will yield a Processing Gain when despread. The processing Gain can be approximated 
using the following formula: 
                                            
             

            10 log  
 
If for example we had a data bandwidth of 1000 hz and a spread bandwidth of 20 Mhz we 
get a Processing gain of approximately 43 db. 
 
There are other advantages to Spread Spectrum besides the signal to noise improvement. 
Some of these advantages are listed below. 
 



               Multiple Access in a common bandwidth 
   
    Additional Security. 
   
    Immunity to narrow bandwidth noise bursts 
    
    Ranging and Geolocation capabilities 
 
 
PRODUCT CODES 
 
A Product Code as discussed in the context of this text is the Exclusive OR-ing (Modulo-
2 adding) of two Linear Recursive Sequences to achieve a third sequence which we call 
the Product Code. The two codes which make up the Product Code are termed as Factor 
Codes. Product Codes can be made up of more than two Factor Codes but for our 
discussion we will limit ourselves to two. Figure 11 is a block diagram of a Product 
generator.                                
 

 
Figure 11 Product Code Diagram 

 
 
 
The Natural length of a Product Generator occurs when the Factor Codes sequence's 
initial fill frame naturally coincide. For example an R4 code whose natural length is 15 
and an R5 code whose natural length is 31 will run to a length of 15 x 31 = 465. Another 
example is a code whose natural length is 15 being XOR-ed with a code whose length is 
15 which yields a code with a length of 15.  
 
Factor Codes can be truncated or appended. For example an R4 can be allowed to run 
past its natural length of 15 to 20 for example and be XOR-ed with an R5 which runs to 
its natural length of 31. This will produce a Product sequence whose natural length will 
run to 31 x 20 = 620. If we then truncate the second sequence length (the R5) by one to 
30 our Product only runs to a Natural length of 60 because the appended R4 code length 
of 20 and the truncated R5 length of 30 both have their respective initial fills loaded 
coincidentally after 60 chips. It must be noted here that Product Codes do not necessarily 
yield Maximal sequences. They may contain Maximal sequences within them which can 
be used if the Product Code itself is truncated to the length of the Maximal code portion 



of the Product Code. Or they may contain a portion of a Maximal sequence or they may 
themselves be a Maximal sequence. Rule three from our Maximal Sequence section tells 
us that the Product of two identical Maximal Sequences with different code offsets 
(different FILLs) gives us the same Maximal sequence at a different code offset.  
 
GOLD CODES 
 
Gold Codes are Product Codes of two different Factor Maximal length sequences with 
the same lengths. The two Factor Codes are able to generate a family of many non-
Maximal Product Codes. An important subset of a family of Gold Codes are Preferred 
Pair Gold Codes. These are Gold Codes whose cross-correlation spectrum is three 
valued. These special pairs of Factor Codes with very predictable cross-correlation 
properties are necessary in an environment where one code must be picked from several 
codes which exist in the spectrum. One method used to determine if the code is a 
Preferred Pair is as follows: 
 
1) Take a length N Maximal Sequence. 
 
2) Create a second sequence by sampling every sth symbol of the first sequence. So now 
sequence #2 is a sth decimation of sequence number 1. This second code must also be a 
Maximal code of the same length. 
 
3) The length should be odd and the gcd(N,s) = 1. (they must be prime). 
 
The relationship of Product Codes / Gold Codes / and Preferred Pair Gold Codes is 
shown in figure 12. For example codes which are mirror images of one another can be 
used to generate a Gold Code  but cannot be used to generate a Preferred Pair Gold Code.  
                                                                                                                                                             

 
Figure 12 Product Code Relational Diagram 

 



The number of three value spectrum cross-correlated Product codes that can be generated 
with a pair of Maximals is equal to the number of phase differences which can be set 
between the two generators by adjusting the fills of one or both generators. For a Gold 
code generator using two R7 Factor generators the number of different combinations 
equals (27-1) = 127 Non-Maximal Product code possibilities plus the two original 
Maximal codes  for a total of 129 codes. For a CDMA system this means 129 different 
code  possibilities 127 of which  have  a cross-correlation spectrum which is three valued.  
 
CORRELATION 
 
Correlation of two sequences can be described as the comparison of the two sequences to 
see how much they correspond with one another. Various parameters effect the 
correlation of two sequences including the code lengths, code phases, and the Chip Rate 
of each sequence. We will demonstrate by correlating a simple square wave with itself. 
The act of correlating a signal through all phase variations of itself is called 
autocorrelation. For our square wave we begin by separating our wave into two waves 
each identical to one another. One of the wave forms will remain constant while the 
second wave form will be slid past the first wave form and a comparison made at each 
step to determine the amount of correspondence between the two wave forms (# of 
Agreements - # of Disagreements). The output wave form reflects the amount of 
correspondence as a rising or declining peak. Figure 13 shows our square wave being 
correlated in quarter cycle steps. The correlation wave form is at its greatest peak when 
the two wave forms are time aligned, and is at its lowest when the two are 180 degrees 
out of phase as seen in Figure 14.  
                           

 
                                      

Figure 13 Step Autocorrelated Square Wave 
 
 

 



Figure 14 Step Correlation display of Autocorrelated Square Wave 
 
 
In the previous example we used a discrete step size of one quarter cycle in the phase 
sliding of our correlation. A digital correlator will always have some step size associated 
with it. An analog correlator (an integrator)  however can correlate over the entire range 
of phase offsets. The autocorrelation function  is in fact an integration of a function 
(signal) from one period in time (phase) to another, and is given by: 
 
                             
                                                  Rf (t) =    
   
 
Doing our same example in this format and limiting our operation to only one clock cycle  
 we have: 
       
    Rf (τ)=    
 

 
             Figure 15  Square Wave and its Autocorrelation function. 
 
From Figure 15 it can be seen that the Correlation peak is at its maximum (.5 V2) at τ = 
0. As the replica wave form is shifted in time the waves no longer correspond in time and 
the correlation peak starts to drop until the replica wave is 180 degrees out of phase with 
the original wave  (τ = T/2). At this point our correlation is 0. Because the wave form is 
repetitive, the wave form starts to move toward realignment right away and the 
correlation peak rises. Depending on the step size of the correlation process the 
correlation peak can look like anything from a triangle to a line peak. 
  
 
 
 



CROSS-CORRELATION 
 
 In cross-correlation the two compared wave forms are different wave forms. This gives 
us an idea of how similar the wave forms are to one another at different phases. 
Correlation (both Auto and Cross) involving two sequences is done as follows: The first 
wave form will be held at a constant phase while second wave form is slid by it in one 
chip steps. At each phase step a count is taken of how many chips match (agree) and how 
many chips do not match (disagree). Then the number of disagrees is subtracted from the 
number of Agrees (ie. A-D) to yield the correlation value for the two sequences at this 
particular phase offset.  If we cross-correlate the R4( TAPS = Ch) sequence  from chapter 
one with both itself (autocorrelation) and then with another R4 (TAPS = 9h) sequence 
(cross-correlation) we  would see that the auto-correlated R4s have only two values; 15 
and -1. Every time the two sequences are perfectly time aligned they have all fifteen 
patterns matching exactly. In this case the Agrees=15 and the Disagrees =0 so A-D = 15. 
At all other phases the correlation value is 7-8= -1. In the cross-correlation example we 
get correlation  values ranging from 7 to -5. These correlation values can be written as 
power ratios using the following formula: 
 
 
                                       Correlation in db =  
 
The power ratio correlation shown here is incoherent. That is to say that it is irrelevant 
whether the sequences are inverted or not. A correlation value of -15 is at the same power 
level as +15 since the numerator of the equation is in Absolute Value brackets.  
 
PARTIAL CORRELATIONS  
 
Partial Correlations are correlation levels which occur between when the Maximum 
number of chips which match in a frame, and when the zero correlation baseline level 
occurs. For Maximal sequences this zero correlation baseline is the number of chips 
which should correlate when the sequences are not time aligned, and is about half +- 1 
chips in the sequence frame.  
 
Partial Correlations can occur when Non-Maximal sequences are used for Spreading 
Codes, or when other sequences are present in a CDMA (Code Division Multiple Access) 
environment, and cross-correlate to some extent with a receivers locally generated 
sequence. Sometimes, in order to speed up the correlation process only a portion of the 
sequence is checked to determine receiver lock. This does indeed speed up the process 
but can also allow partial correlations of the portion of the code which is used. 
Predictable Partial Correlations can be used to your advantage. In particular extremely 
long sequences with partial correlations with predictable levels and phases can aid in 
quick code lock times. This technique is used in JPL Ranging codes. 
 
  
CDMA APPLICATIONS 
 
As was mentioned earlier in the article, Code Division Multiple Access (CDMA) 
technology allows multiple users to exist in the same bandwidth using different codes. 



During the 1980s Direct Sequence CDMA systems were investigated and eventually led 
to the commercialization of cellular spread spectrum communications. CDMA IS-95 was 
standardized in 1993, and commercial use of the system began in 1996. Some of the 
current CDMA cellular standards are termed 3G (third generation) systems. One such 
system W-CDMA has been standardized by the ETSI 3GPP (third generation partnership 
project).  A block diagram of the W-CDMA downlink is shown in Figure 16. The signals 
in the first Complex addition block consists of 10 Common (control type) channels and a 
number of Dedicated Physical Channels (DPCH). The number of possible dedicated 
channels depends on the type of channel, the data rate, and the Spreading Factor of the 
signal. A typical scenario, would be 32 dedicated with 10 control channels. 
 
 

 
Figure 16 W-CDMA Downstream Channel Block Diagram 

 
All channels have individual channelization codes and weight factors (G) associated with 
them. All the channels are modulated with channelization codes and then with the base 
station scrambling code, then weighted and then summed. Table 1.0 describes the 
spreading codes used. Primary and Secondary Scrambling codes are added to the signal 
before being mixed onto a carrier.  Sync Code Channels (SCH) which take up the first 
256 bit of each of the 15 time slots in a WCDMA frame are also present.  
 
 

Spreading 
Code 

Rate Type Length Comment 

Channelization 3.84 MHz OVSF 4 to  256 Sometimes called 
Walsh or 
Hadimard 
Sequences 

Scrambling  3.84 MHz Truncated R18 
Gold 

38,400 Sometimes called 
Product Codes 

Table 1.0 Spreading Code Descriptions 
 



In this system the scrambling codes used are Gold Codes truncated from their natural 
length to an even 38,400. This is done to make it easier for the data and underlying 
channelization codes to be synchronous divisions of the scrambling code. The coding 
properties allow for multiple channels to exist on top of one another. Figure 17 shows the 
FFT (frequency domain) picture of a W-CDMA signal. 
 

 
 
Figure 19 shows a code domain analysis of a WCDMA signal with 35 Active code 
channels. These actually are channelization codes after the scrambling codes have been 
striped. 

 



COMMERCIAL PRODUCTS 
 
Many other commercial products use PN sequences. One of the most wide spread uses is 
for random data generators and bit error rate testers. The pseudo random, and predictable 
repeat length properties of PN sequences make them highly desirable for data generators. 
High bandwidth systems running at data rates as high as 40 Gigabits per second are being 
developed and employed. These systems need data generators for testing purposes. Data 
generators like the ST-192 Data Pattern generator shown below is a pseudo random 
pattern generator for OC-192 design verification, production testing, and field testing. It 
is factory configurable to output a single pattern with a length of 2 7 -1, 2 23-1 or 2 31 -1 bits. 
The ST-292 is available for any one of the standard OC-192 data rates of 9.95, 10.31, 
10.57, 10.66 or 12.5 GBPS. A 40 Gbit version is currently being developed. Download 
the ST-292 Datasheet. 
 

 
 

Another product also available from SIGTEK is the ST-111 Spread Spectrum Signal 
generator. The ST-111’s baseboard is a fully programmable triple PN generator whose 
settings are totally programmable. The ST-111 is an ISA computer board with an RF 
daughter board which allows the PN spread data to be modulated on an IF carrier. 
 

 
 
The ST-111 software contains tables of Maximal Length PN Sequences which can be 
selected from. It’s software allows the sequences TAP, LENGTH, FILL and CHIP RATE 
to be selected. The ST-111 has an on board programmable Direct Digital Synthesizer 
clock source.  

http://www.sigtek.com/products/st292/st292.jpg
http://www.sigtek.com/products/st111/st111.html


 
 

 
  

Figure 19 ST-111 Software Screens 
 

 

http://www.sigtek.com/products/st111/st111.html


 

A member of Sigtek's high performance VME software radio family, 
the ST-135 high performance software radio demodulates a growing 
set of signals including BPSK, DBPSK, QPSK, DQPSK, FSK and 
MSK.  Bit rates from 1.2 Kbps to 32 Mbps with future growth to 40 
Mbps and beyond.  The expandable software radio architecture allows 
addition and enhancement of demodulation types.  Control software 
includes a Java control application for TCP/IP remote operation and 
Solaris device drivers.  Options include a direct sequence CDMA 
spread spectrum receiver and FEC decoder. The ST-135 can easily 
demodulate the signals generated by the ST-111 signal generator. It 
uses FPGAs and is very flexible and programmable.  

 

 

Another very interesting CDMA product from SIGTEK combines the transmit and 
receive functions into one board, and uses a proprietary CDMA code channelization 
scheme. The ST-270 CDMA VSAT modem is a high data rate modem using direct-
sequence spread spectrum (DS/SS) technology to support multiple users within the same 
bandwidth using code division multiple access (CDMA).  The reduced power spectral 
density of DS/SS modulation reduces spectral interference, which is important in satellite 
applications.  Turbo codes are used in the forward error correction permitting operation at 
low Eb/No values while maintaining bit error rates below 10-6.  The modem uses multiple 
orthogonal channels to carry data and network information.  Networking messages may 
be passed between modems without affecting the traffic data rate.  The ST-270 may also 
be used in point-to-point and point-to-multipoint applications where spread spectrum 
provides improved immunity to multipath.  

 

http://www.sigtek.com/products/st135/st135.html
http://www.sigtek.com/products/st270/st270.pdf


Interfacing to the modem is made through standard intermediate frequencies.  Command 
and control possible through an RS-232 interface.  

FEATURES:  

• Variable bandwidth/chip rate up to 20 MHz.  
• Data rates up to 1.544 Mbps.  
• Turbo codes used for FEC.  
• IF available at 70 and 140 MHz (other frequencies also possible).  
• Clock and data interface use RS-422.  
• Command and Control available through two RS-232 interfaces.  

If you learn or already understand Verilog or VHDL , PN sequences can be generated 
using programmable logic boards like the APS-V240 board. The APS-V240 board from 
Associated Professional Systems can be used to generate multiple streams of this kind. 

 
 

The APS-V240 card is a PC104 module with a large FPGA, optional 256K by 18 ZBT 
SRAM, three oscillator sockets, on board XC1800 series JTAG chained eproms, 
XC95144 CPLD, on board programmable Direct Digital Synthsized (DDS) clock. Phase 
Lock Loop Clock Multiplier chip .The board can use any of XILINX's Virtex series 
FPGAs in the 240 pin QFP format. The board gets its power from the ISA BUS or can 
use an off board transformer or power supply. The board is ideal for PC104 applications 
as well as being an ideal platform for development and FPGA code design. The board's 
small size makes it great for embedded designs where a powerful programmable logic 
device is required. User's can leverage off of the large number of PC104 controller and 
peripheral board options available for the PC104 family. An ISA board carrier can be 
purchased to allow the 104 card to be placed in a standard PC chassis slot if desired. An 
example VHDL process section of code is shown below which will generate a PN 
sequence after being synthesized and placed and routed in the board. The code 

http://www.associatedpro.com/v240.html


implements an R10 PN with a tap setting of 204. The Sequence can be restarted using an 
external reload pulse. 
The code runs on an external clock called E_PNClk. 
 
 
PN: PROCESS 
begin 
      
 wait until E_PNClk'event and E_PnClk ='1'; 
    
                if E_Reload = '1'  then -- if reload pulse 
                                
                               S_R10_PN <= "1111111111";           --R10 PN Sequence Initial Fill 
                               S_Count <= 0;    
  S_PN_Enable <= '0'; 
   
  else 
         
                  if S_R10_PN = "0000000000" then  --insure no all zero fill 
                                S_R10_PN <= "0000000001";        
  
 end if; 
 
      
           

 --R10 LRS 204 hex  2 taps 9 and 2 
 -- Shift Registers 

 
 S_R10_PN(9) <= S_R10_PN(8); 
 S_R10_PN(8) <= S_R10_PN(7); 
 S_R10_PN(7) <= S_R10_PN(6); 
 S_R10_PN(6) <= S_R10_PN(5); 
 S_R10_PN(5) <= S_R10_PN(4); 
 S_R10_PN(4) <= S_R10_PN(3); 
 S_R10_PN(3) <= S_R10_PN(2); 
 S_R10_PN(2) <= S_R10_PN(1); 
                S_R10_PN(1) <= S_R10_PN(0); 
                S_R10_PN(0) <= S_R10_PN(9)XOR S_R10_Pn(2); -- form feedback 
                 
  
  
end process PN; 
 
 
CONCLUSION 
 
Linear Recursive sequences continue to be used in more and more products and devices 
in our modern world. This article discussed the generation and use of these sequences. 
Concepts like correlation, maximal length, Gold Codes and CDMA were covered as well 
as modern applications for these sequences. It is inevitable that these sequences will show 
up in more and more products in the future.  
 
A free PN generator program is available for download. The program runs on a PC 
platform and is available for download at the following link. 
 
http://www.associatedpro.com/getpn.html 
 
 
 
 

http://www.associatedpro.com/getpn.html
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