
AN107A May 12, 1997 Page 1 of 5

 B Y E L A N I X
SystemView

Application Note AN107A May 12, 1997

Using SystemView by ELANIX to Generate Bit Error
Rate (BER) Curves
Maurice L. Schiff, Ph.D., Chief Scientist, ELANIX, Inc.

The most important figure of merit in a
communications system is the bit error rate
(BER). This application note is designed to aid
the user in generating such plots.

We will start with the mechanics of
generating the BER plot. Figure 1 is the
simplest of communication systems. We are
adding noise (AWGN) to a data source token
(token 0) of amplitude A at 1 sample/bit, and
then making a hard decision (token 5) on the
output. If the noise sample is greater than the
signal and is of opposite sign, an error has
occurred. This model is the vector channel
representation of antipodal signaling such as
PSK.

The first step is to calibrate the signal to
noise ratio, which is generally expressed in
energy per bit Eb divided by the noise power
density No (W/Hz)/ By definition for a baseband
signal,

Eb / No = A T / No A / NoR2 2=

where A is the signal amplitude (normally set to
unity), and R = 1/T is the data rate of the source.
Now set No in the noise token such that Eb/No =
1 (0 dB) or,

No A / R2=

Figure 1. BER set-up for simple communications system

AN107A May 12, 1997 Page 2 of 5

Enter the value of No calculated from this
equation into the noise source token, using the
W/Hz parameter window.

The control of Eb/No can be
accomplished by inserting a gain token after the
source, or after the noise. The latter is preferred
(token 3) if your system has a tracking loop,
where the bandwidth is dependent on the
amplitude of the incoming signal.

Setting Up the BER Token and Its Outputs
The BER token (token 4) has several

parameters as described in the token definition
section. Set the number of trials to 1. The token
output is 1 if there is an error, and 0 if correct.
To obtain a running BER use the cumulative
average token (token 8) found in the Function
library. The only value of the average that will
be used is the final value at the end of the run.
Thus, we use a final value sink (token 9). This
saves the memory requirements of having to hold
onto all of the intermediate values which are
unnecessary.

The number of points that must be run
in a simulation depends on the BER level
desired. For a BER of say 1e-4 at least 1e-5
trials must taken to obtain a statistically
significant number of errors. If the BER desired
is 1e-2, then at least 1e- 3 trials are required, etc.

One way to generate the BER curve is
to set a large number of trials in the time
window, large enough to accommodate the
number of trials required for the lowest desired
BER. The problem with this method is, at the
higher BER rates, this large number of trials is an
overkill. What is desired is a mechanism where
the number of trials is related to the BER at hand.
This can be accomplished by running the
simulation long enough to accumulate a fixed
number of errors. The number of trials will vary
in this case. However, at each BER level only
the time required to obtain a sufficient accuracy
is used. This procedure optimizes the simulation
run time.

A simple counter can be implemented

by a digital filter H(z) 1 / (1 z)1= − − . This is

shown as token (token 6) the figure. The output
of the counter is sent to a sink token (token 7)
with a stop sink definition. One of the options in
the stop sink token is to go to the next loop when
the threshold is reached. Thus, if we set the
threshold to, for example, 20, the simulation at a
given loop will continue until 20 errors occur,
and then the simulation will advance to the next
loop. In the time window, set the run time per
loop large enough to accommodate the lowest
desired BER. The loop will run until the stop
token threshold is crossed or until the run time
indicated is satisfied. Again, the simulation will
spend only that time required to obtain a
significant answer at each loop for each BER.

To control the Eb/No per loop use the
global parameter link option in the token pull
down menu. Select the gain token (token 3). In
the panel F(Gi,Vi), write a simple algebraic
expression that controls the noise gain token
(token 3) in dB. For example, suppose that we
wish to start Eb/No at a value of 4 dB and
increment by 2 dB on each loop. Then the
equation F(Gi,Vi)= -2*cl-2 will produce the
desired results. The minus sign is used since we
are decreasing the noise, not raising the signal
power in this example. At the end of each loop,
the final value BER sink will have the desired
data as shown in the parameter window in
Figure 1.

To obtain the desired BER plot, got to
the analysis window. Open the sink calculator,
and select the ‘style’ tab. Select the BER plot
option. In the start parameter box enter 4, and
for the increment parameter enter 2. Select the
sink token that contains the final value BER
information and click OK. The BER plot as
shown in Figure 2 will appear. You can
annotate this plot as desired.

AN107A May 12, 1997 Page 3 of 5

SystemView by ELANIX

4.2

4.2

5.2

5.2

6.2

6.2

7.2

7.2

 1.00e-3

 3.00e-3

 5.00e-3

 7.00e-3

 9.00e-3
 1.10e-2
 1.30e-2

B

E

R

Eb/N0 (dB)

BER vs Eb/N0

Figure 2. Typical BER curve

Another requirement for calculating
BER curves centers on the timing of the signal as
it passes through the system. Figure 3 shows a
more complicated system than Figure 1. In this
case we are encoding the data via a (7,4) BCH
block code (token 2). The BER token (token 8)
requires two inputs which have the exact same
time base. The time base rate is one sample per
data bit. However, due to group delays through
the simulation, the recovered clock while having
the correct rate may be shifted in phase from the
clock associated with the truth data.

In Figure 3 the source data (token 0) is
sampled at a rate of 1 sample per bit or 1 Hz in
this case. The sampler token then produces a
time base at this rate with the first sample stating
a t=0. The BCH coder token gathers 4 bit blocks
of the input and produces 7 bit blocks which
occupy the same time span (4 sec). Thus, each
encoded bit is 4/7=0.5714 sec. long. At this
point the output clock of the encoder is at a 1.75
Hz rate with the first sample at t=0. After the
encoder the hold token (token 4) reestablishes
the system sample rate.
 The channel adds AWGN noise (token
11), and the receiver must then recover the data.

The optimum detector for any signal
with AWGN is the matched filter. In this case
the matched filter is a simple integrate and dump
(I&D) operation (token 5) set to the encoded bit
time 4/7 sec.. The data is recovered by sampling
(token 6) this filter once per bit at a data rate of

1.75 Hz. It is important to note that the first
valid data bit out of the sampler is at t = 4/7 sec
not at t = 0. This is the group delay through the
I&D token. To properly decode the blocks of
data, the start time parameter of the BCH
decoder (token 9) is set for 4/7 sec. The
decoders first output is then 4 4/7 sec., the next is
at 8 4/7 sec, etc. The data bits (4 per block) are 1
sec in duration but the first bit is at 4/7. Thus,
there is a 4/7 sec time difference between the two
1 Hz clocks which are carrying data to the BER
token. The combination of the hold token (token
21) and the sampler token (token 22)
reestablishes this clock phase of the clock from
the BCH decoder to 0, 1, 2, sec, etc.

The remaining task is to determine the
overall group delay through the system. This is
accomplished by using the Correlation/
Convolution option in the sink calculator. The
sample delay token (token 20) is initially set to 0.
Run the system for a short period of time.

Now in the Analysis Window go into
the sink calculator. Choose the Correlation/
Convolution tab, and select the cross correlation
option. In the upper right text box choose one of
the two sinks entering the BER token (token 19),
in the lower box choose the other (token 18).
The resulting plot will have a sharp peak.
Figure 4 shows this type of plot for this case.

AN107A May 12, 1997 Page 4 of 5

Figure 3. Simulation system with group delay

SystemView by ELANIX

-500

-500

-300

-300

-100

-100

100

100

300

300

500

500

200.e-3

250.e-3

300.e-3

350.e-3

400.e-3

450.e-3

500.e-3

Peak at 9 sample delayPeak at 9 sample delay

A

m

p

l

i

t

u

d

e

Time in Seconds

Cross Correlation of Data In vs. Data Out.

Figure 4. Cross correlation of BER input data stream

AN107A May 12, 1997 Page 5 of 5

Place your mouse on the peak
correlation point and read in the box at the upper
right the coordinates of the point and in
particular the location of the point with respect to
zero shift : S8 in this case. Enter this integer
number into the sample delay (token 18) and
rerun the simulation. There should be no errors.

Your system is now properly aligned.
Reestablish the noise and setup the simulation as
described above.

Other Timing Issues
A common operation in

communications systems is to recover a bit or
symbol after a matched filter or other filtering
options. The SystemView sample token is
designed for this purpose. However, the sampler
starts sampling at t = 0, T, 2T, etc. It may
happen in your system that the group delay
through the various token elements is not an
integer multiple of T.

In this case, the sampler would not
recover the correct information. To compensate
for this offset, add a delay token before the
sampler and add the necessary value to move the
total group delay to a multiple of T. This is
equivalent to establishing bit or symbol
synchronization. Now the sampler token
retrieves the correct information.

Group Delay Through SystemView Tokens
• FIR filter: For an N tap FIR filter operating

at a rate fs, the group delay T is T=(N-
1)fs/2. In order to keep T an integer
multiple of fs, N should be an odd number.

• IIR filter: The is no simple formula
available. In the SystemView linear system
token window click on the ‘group delay’
button in the lower left hand corner of the
form. Expand the plot around the frequency
range where the filter response is maximum.
Read the group delay calibrated in units of
the sample time. Note that the group delay
need not be an integer number of 1/fs.

• Integrate and Dump matched filter token
in Comm library: The group delay T is the
integration time entered in the token
parameter window.

• Average Token: The group delay T is the
time value entered in the parameter window.

• Block Error Encoder: For an (N, k, t)
block error encoder the group delay is one
code block in time. T can be expressed in

terms of the input sample rate to the token
which is the data or symbol rate R of the
information source. T = k/R. The encoder
token produces N bits out for k bits in at a
new rate R’ =RN/k. Thus T = N/R’ is also a
valid expression.

• Block Error Decoder: Same as Block error
encoder.

• Convolutional Code Encoder: None.
• Convolutional Code Decoder: The

convolutional decoder parameters include
the number of information bits k, and the
path length (PL) used by the Viterbi
algorithm to make a decision. If R is the
encoded bit rate into the decoder, then the
delay T is given by T = k*(PL+2)/R.

• Bit to Symbol: The token gathers k bits of
data having a rate R, and produces an
output between 0 and 2^k-1. The group
delay is T = k/R.

• Symbol to Bit: None.
• Gray Encoder: The encoder converts one

set of k bits of a signal of data rate R (at 1
sample/bit), to a second Gray encoded set.
The group delay is T = k/R.

• Gray Decoder: Same as Gray encoder.
• Pulse Width Modulator: None.
• Pulse Width Demodulator: The group

delay T is the reciprocal of the rate entered
in the token parameter widow.

• Pulse Position Modulator: None.

• Pulse Position Demodulator: The group
delay T is the reciprocal of the rate entered
in the token parameter widow.

